【題目】已知向量 =(sin
,sin
),
=(cos
,cos
),且向量
與向量
共線.
(1)求證:sin( ﹣
)=0;
(2)若記函數(shù)f(x)=sin( ﹣
),求函數(shù)f(x)的對稱軸方程;
(3)求f(1)+f(2)+f(3)+…+f(2013)的值;
(4)如果已知角0<A<B<π,且A+B+C=π,滿足f( )=f(
)=
,求
的值.
【答案】
(1)證明:∵向量 與向量
共線,
∴sin cos
﹣sin
cos
=0,即sin(
﹣
)=0
(2)解:由 (k∈Z)得,
,
∴函數(shù)f(x)的對稱軸方程是
(3)由f(x)=sin( ﹣
)得,函數(shù)f(x)的周期T=
=4,
則f(1)+f(2)+f(3)+f(4)= =0,
∴f(1)+f(2)+f(3)+…+f(2013)=503×[f(1)+f(2)+f(3)+f(4)]+ =
(4)由f( )=f(
)=
得,
,
∵0<A<B<π,∴ ,
,
則 ,
,
解得,A= ,B=
,
由A+B+C=π得,C= ,
∴ =2sin(
)=
【解析】(1)根據(jù)向量共線的條件和兩角差的正弦公式化簡即可;(2)根據(jù)正弦函數(shù)的對稱軸得: (k∈Z),再求出x的式子得函數(shù)f(x)的對稱軸方程;(3)先由周期公式求出函數(shù)的周期,再求出一個(gè)周期內(nèi)的函數(shù)值的和,然后判斷出式子中共有多少個(gè)周期,再求出式子的值;(4)把條件代入解析式化簡后,根據(jù)角的范圍求出A、B的值,再求出C的值,代入式子根據(jù)兩角和的正弦公式化簡求值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識(shí),掌握兩角和與差的正弦公式:,以及對正弦函數(shù)的對稱性的理解,了解正弦函數(shù)的對稱性:對稱中心
;對稱軸
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知點(diǎn),曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)
的極坐標(biāo)為
,直線
的極坐標(biāo)方程為
,且
過點(diǎn)
;過點(diǎn)
與直線
平行的直線為
,
與曲線
相交于兩點(diǎn)
.
(1)求曲線上的點(diǎn)到直線
距離的最小值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:
質(zhì)量指標(biāo)值 | |||
等級 | 三等品 | 二等品 | 一等品 |
從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據(jù)以上抽樣調(diào)查數(shù)據(jù) ,能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?
(2)在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再從這8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;
(3)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測,產(chǎn)品質(zhì)量指標(biāo)值近似滿足
,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線
:
,曲線
:
(
為參數(shù)),以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸,建立極坐標(biāo)系.
(Ⅰ)求曲線,
的極坐標(biāo)方程;
(Ⅱ)曲線:
(
為參數(shù),
,
)分別交
,
于
,
兩點(diǎn),當(dāng)
取何值時(shí),
取得最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知平面向量 =(1,x),
=(2x+3,﹣x)(x∈R).
(1)若 ∥
,求|
|
(2)若 與
夾角為銳角,求x的取值范圍.
(3)若| |=2,求與
垂直的單位向量
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B,C,D為平面內(nèi)的四點(diǎn),且A(1,3),B(2,﹣2),C(4,1).
(1)若 =
,求D點(diǎn)的坐標(biāo);
(2)設(shè)向量 =
,
=
,若k
﹣
與
+3
平行,求實(shí)數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在等比數(shù)列{an}中,a2=3,a5=81. (Ⅰ)求an;
(Ⅱ)設(shè)bn=log3an , 求數(shù)列{bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足an=2Sn﹣1(n∈N*) (Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)若bn=(2n+1)an , 求{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量(單位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分組的頻率分布直方圖如圖.
(1)求直方圖中x的值;
(2)求月平均用電量的眾數(shù)和中位數(shù);
(3)估計(jì)用電量落在[220,300)中的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com