【題目】如圖,在菱形中,,是的中點,平面,且在矩形中,,.
(1)求證:;
(2)求證:平面;
(3)求二面角的大小.
【答案】(1)證明見解析(2)證明見解析(3)60°
【解析】
(1)連接,再證明平面,利用線面垂直的性質(zhì),即可證得;
(2)設(shè)與交于,連結(jié),由已知可得四邊形是平行四邊形,則可證是的中位線,由線面平行的判定定理,即可證得;
(3)由于四邊形是菱形,是的中點,可得,故可以為原點建立空間直角坐標(biāo)系,由幾何關(guān)系,可寫出相應(yīng)點的坐標(biāo),用向量法即可求解.
解:(1)連結(jié),則.
由已知平面,
因為,
所以平面.
又因為平面,
所以.
(2)設(shè)與交于,連結(jié),
由已知可得四邊形是平行四邊形,
所以是的中點.
因為是的中點,
所以.
又平面,
平面,
所以平面.
(3)由于四邊形是菱形,是的中點,可得.
所以由幾何關(guān)系可建立如圖所示的空間直角坐標(biāo)系,
則,,,.
所以.
設(shè)平面的法向量為.
則
所以
令,則
所以.
又因平面的法向量,
所以.
所以由上及圖可知二面角的大小是60°.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論中正確的個數(shù)是( ).
①在中,若,則是等腰三角形;
②在中,若 ,則
③兩個向量,共線的充要條件是存在實數(shù),使
④等差數(shù)列的前項和公式是常數(shù)項為0的二次函數(shù).
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閱讀如圖判斷閏年的流程圖,判斷公元1900年、公元2000年、公元2018年、公元2020年這四年中閏年的個數(shù)為(nMODm為n除以m的余數(shù))( )
A.1個B.2個
C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點C是平面直角坐標(biāo)系中的一個動點,過點C且與y軸垂直的直線與直線交于點M,若向量與向量垂直,其中O為坐標(biāo)原點.
(1)求點C的軌跡方程E;
(2)過曲線E的焦點作互相垂直的兩條直線分別交曲線E于A,B,P,Q四點,求四邊形APBQ的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,集合,,滿足.
①每個集合都恰有5個元素
②
集合中元素的最大值與最小值之和稱為集合的特征數(shù),記為,則 的值不可能為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在上的函數(shù),滿足.
(1)證明:2是函數(shù)的周期;
(2)當(dāng)時,,求在時的解析式,并寫出在()時的解析式;
(3)對于(2)中的函數(shù),若關(guān)于x的方程恰好有20個解,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C上的點到點的距離與它到直線的距離之比為,圓O的方程為,曲線C與x軸的正半軸的交點為A,過原點O且異于坐標(biāo)軸的直線與曲線C交于B,C兩點,直線AB與圓O的另一交點為P,直線PD與圓O的另一交點為Q,其中,設(shè)直線AB,AC的斜率分別為;
(1)求曲線C的方程,并證明到點M的距離;
(2)求的值;
(3)記直線PQ,BC的斜率分別為、,是否存在常數(shù),使得?若存在,求的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某產(chǎn)品的歷史收益率的頻率分布直方圖如圖所示.
(1)試估計該產(chǎn)品收益率的中位數(shù);
(2)若該產(chǎn)品的售價(元)與銷量(萬份)之間有較強線性相關(guān)關(guān)系,從歷史銷售記錄中抽樣得到如表5組與的對應(yīng)數(shù)據(jù):
售價(元) | 25 | 30 | 38 | 45 | 52 |
銷量(萬份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
根據(jù)表中數(shù)據(jù)算出關(guān)于的線性回歸方程為,求的值;
(3)若從表中五組銷量數(shù)據(jù)中隨機抽取兩組,記其中銷量超過6萬份的組數(shù)為,求的分布列及期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com