已知兩圓.求經(jīng)過兩圓交點的公共弦所在的直線方程                 

 

【答案】

【解析】

試題分析:兩圓的方程相減并化簡得。

考點:本題主要考查圓與圓的位置關(guān)系

點評:求經(jīng)過兩圓交點的公共弦所在的直線方程,方法是兩圓方程相減后再化簡。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:湖南省師大附中2010屆高三第四次月考、文科數(shù)學試卷 題型:044

已知兩圓O1:(x+1)2+y2和O2:(x-1)2+y2,動圓P與⊙O1外切,且與⊙O2內(nèi)切.

(Ⅰ)求動圓圓心P的軌跡方程;

(Ⅱ)過點M(5,0)作直線l與點P的軌跡交于不同兩點A、B,試推斷是否存在直線l,使得線段AB的垂直平分線經(jīng)過圓心O2?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年北京師大附中高三(上)第四次月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知兩圓Q1:(x+1)2+y2=和Q2:(x-1)2+y2=,動圓P與⊙O1外切,且與⊙O2內(nèi)切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)過點M(5,0)作直線l與點P的軌跡交于不同兩點A、B,試推斷是否存在直線l,使得線段AB的垂直平分線經(jīng)過圓心O2?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年廣東省珠海市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知兩圓Q1:(x+1)2+y2=和Q2:(x-1)2+y2=,動圓P與⊙O1外切,且與⊙O2內(nèi)切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)過點M(5,0)作直線l與點P的軌跡交于不同兩點A、B,試推斷是否存在直線l,使得線段AB的垂直平分線經(jīng)過圓心O2?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年湖南省高考數(shù)學考前沖刺試卷(解析版) 題型:解答題

已知兩圓Q1:(x+1)2+y2=和Q2:(x-1)2+y2=,動圓P與⊙O1外切,且與⊙O2內(nèi)切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)過點M(5,0)作直線l與點P的軌跡交于不同兩點A、B,試推斷是否存在直線l,使得線段AB的垂直平分線經(jīng)過圓心O2?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年廣東省珠海市高三(下)質(zhì)量監(jiān)測數(shù)學試卷(文科)(解析版) 題型:解答題

已知兩圓Q1:(x+1)2+y2=和Q2:(x-1)2+y2=,動圓P與⊙O1外切,且與⊙O2內(nèi)切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)過點M(5,0)作直線l與點P的軌跡交于不同兩點A、B,試推斷是否存在直線l,使得線段AB的垂直平分線經(jīng)過圓心O2?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案