【題目】已知函數(shù)().
(1)若函數(shù)有零點,求實數(shù)的取值范圍;
(2)若對任意的,都有成立,求實數(shù)的取值范圍.
【答案】(1);(2).
【解析】試題分析:(1)題意等價于關(guān)于的方程有正根,設(shè),根據(jù)二次函數(shù)的性質(zhì),對二次項系數(shù)進行討論,分為,和三種情形進行討論;(2)原題意等價于,分為和時,結(jié)合二次函數(shù)的性質(zhì)求結(jié)果.
試題解析:(1)由函數(shù)有零點得:關(guān)于的方程()有解
令,則于是有,關(guān)于的方程有正根
設(shè),則函數(shù)的圖象恒過點且對稱軸為
當時,的圖象開口向下,故恰有一正數(shù)解
當時,,不合題意
當時,的圖象開口向上,故有正數(shù)解的條件是
解得:
綜上可知,實數(shù)的取值范圍為.
(2)“對任意都有”即,②
∵,故②變形為:③
又當時,恒有,
故當時,,故不等式③恒成立
當時, ,當且僅當時取等號
∴,解得,綜上可知,實數(shù)的取值范圍.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個盒子中裝有5張編號依次為1、2、3、4、5的卡片,這5 張卡片除號碼外完全相同.現(xiàn)進行有放回的連續(xù)抽取2 次,每次任意地取出一張卡片.
(1)求出所有可能結(jié)果數(shù),并列出所有可能結(jié)果;
(2)求事件“取出卡片號碼之和不小于7 或小于5”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若圖,在正方體中, 分別是的中點.
(1)求證:平面平面;
(2)在棱上是存在一點,使得平面,若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當時,求在區(qū)間上的最大值;
(2)若在區(qū)間上,函數(shù)的圖象恒在直線下方,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點(都在軸上方),且.
(1)求橢圓的方程;
(2)當為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列和滿足:, ,,其中.
(1)求數(shù)列和的通項公式;
(2)記數(shù)列的前項和為,問是否存在正整數(shù),使得成立?若存在,求的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且,.
(Ⅰ)求證:數(shù)列是等比數(shù)列;
(Ⅱ)設(shè)是數(shù)列的前項和,若對任意的都成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《續(xù)古摘奇算法》(楊輝)一書中有關(guān)于三階幻方的問題:將1,2,3,4,5,6,7,8,9分別填入的方格中,使得每一行,每一列及對角線上的三個數(shù)的和都相等,我們規(guī)定:只要兩個幻方的對應(yīng)位置(如每行第一列的方格)中的數(shù)字不全相同,就稱為不同的幻方,那么所有不同的三階幻方的個數(shù)是( )
8 | 3 | 4 |
1 | 5 | 9 |
6 | 7 | 2 |
A. 9 B. 8 C. 6 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知各項都是正數(shù)的數(shù)列的前項和為,,
(1)求數(shù)列的通項公式;
(2)設(shè)數(shù)列滿足:,,數(shù)列的前項和,求證:;
(3)若對任意恒成立,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com