已知等差數(shù)列中,公差,其前項和為,且滿足:,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,),求的最大值.
(1);(2)取得最大值.

試題分析:本題主要考查等差數(shù)列的通項公式、前n項和公式、等差數(shù)列的性質和基本不等式等基礎知識,考查思維能力、分析問題解決問題的能力、運算能力等.第一問,先利用等差數(shù)列的性質將轉化成,再結合的值,聯(lián)立解出,求出,寫出通項公式;第二問,先利用等差數(shù)列的前n項和公式求,代入到中,再將結果代入到中,上下同除以,利用基本不等式求最值,要注意等號成立的條件.
試題解析:∵數(shù)列是等差數(shù)列,
,又,
,
∵公差,∴,
,,
.
(2)∵,
,
.
當且僅當,即時,取得最大值.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

正項數(shù)列的前n項和為,且
(Ⅰ)證明數(shù)列為等差數(shù)列并求其通項公式;
(2)設,數(shù)列的前n項和為,證明:。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

是數(shù)列的前項和,對任意都有成立, (其中、是常數(shù)).
(1)當,,時,求;
(2)當,,時,
①若,,求數(shù)列的通項公式;
②設數(shù)列中任意(不同)兩項之和仍是該數(shù)列中的一項,則稱該數(shù)列是“數(shù)列”.
如果,試問:是否存在數(shù)列為“數(shù)列”,使得對任意,都有
,且.若存在,求數(shù)列的首項的所
有取值構成的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知數(shù)列,滿足,,且對任意的正整數(shù)均成等比數(shù)列.
(1)求、的值;
(2)證明:均成等比數(shù)列;
(3)是否存在唯一正整數(shù),使得恒成立?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

是各項均為非零實數(shù)的數(shù)列的前項和,給出如下兩個命題上:
命題是等差數(shù)列;命題:等式對任意)恒成立,其中是常數(shù)。
⑴若的充分條件,求的值;
⑵對于⑴中的,問是否為的必要條件,請說明理由;
⑶若為真命題,對于給定的正整數(shù))和正數(shù)M,數(shù)列滿足條件,試求的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù),記,若是遞減數(shù)列,則實數(shù)的取值范圍是______________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在等差數(shù)列中,,的前5項和=(  )
A.7B.15C.20D.25

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

等比數(shù)列的前項和為,且成等差數(shù)列。若,則             

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知數(shù)列滿足,則(   )
A.53B.54 C.55D.109

查看答案和解析>>

同步練習冊答案