【題目】已知點A(0,﹣2),橢圓E: + =1(a>0,b>0)的離心率為 ,F(xiàn)是橢圓E的右焦點,直線AF的斜率為 ,O是坐標原點.
(1)求E的方程;
(2)設過點A的直線l與E相交于P,Q兩點,當△OPQ的面積最大時,求直線l的方程.
【答案】
(1)解:設F(c,0),由條件知 ,得 ,又 ,
∴a=2,b2=a2﹣c2=1,
故E的方程為:
(2)解:當l⊥x軸時,不合題意,
故設l:y=kx﹣2,p(x1,y1),Q(x2,y2),
聯(lián)立 ,得(1+4k2)x2﹣16kx+12=0.
當△=16(4k2﹣3)>0,即 時,
, .
從而 .
又點O到直線PQ的距離 .
∴△OPQ的面積為 ,
設 ,
則 ,當且僅當 ,即t=2時取“=”.
∴ ,即 時等號成立,且滿足△>0,
∴當△OPQ的面積最大時,l的方程為 或
【解析】(1)設F(c,0),由已知得 ,求得c,再由離心率求得a,結(jié)合隱含條件求得b,則橢圓方程可求;(2)由題意可知,當l⊥x軸時,不合題意,設l:y=kx﹣2,聯(lián)立直線方程與橢圓方程,求出P、Q的橫坐標,代入弦長公式求得|PQ|,再由點到直線的距離公式求得O到PQ的距離,代入三角形面積公式,換元后利用基本不等式求最值,同時求得當△OPQ的面積最大時直線l的方程.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,多面體OABCD,AB=CD=2,AD=BC= ,AC=BD= ,且OA,OB,OC兩兩垂直,則下列說法正確的是( )
A.直線OB∥平面ACD
B.球面經(jīng)過點A,B,C,D四點的球的直徑是
C.直線AD與OB所成角是45°
D.二面角A﹣OC﹣D等于30°
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是遞增的等比數(shù)列,且a1+a4=9,a2a3=8.
(1)求數(shù)列{an}的通項公式;
(2)設Sn為數(shù)列{an}的前n項和,bn= ,求數(shù)列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=2,PD ,M為棱PB的中點. (Ⅰ)證明:DM⊥平面PBC;
(Ⅱ)求二面角A﹣DM﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,已知長方形ABCD中,AB=2,AD=1,E為DC的中點.將△ADE沿AE折起,使得平面ADE⊥平面ABCE.
(1)求證:平面BDE⊥平面ADE
(2)求三棱錐 C﹣BDE的體積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C的半徑為1,圓心C(a,2a﹣4),(其中a>0),點O(0,0),A(0,3)
(1)若圓C關于直線x﹣y﹣3=0對稱,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點P,使|PA|=|2PO|,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在平行四邊形ABB1A1中,∠ABB1=60°,AB=4,AA1=2,C,C1分別為AB,A1B1的中點,現(xiàn)把平行四邊形ABB1A1沿CC1折起如圖2所示,連接B1C,B1A,B1A1 .
(1)求證:AB1⊥CC1;
(2)若AB1= ,求二面角C﹣AB1﹣A1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層.某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元.該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(Ⅰ)求k的值及f(x)的表達式.
(Ⅱ)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com