若橢圓數(shù)學(xué)公式的焦點分別為F1、F2,以原點為圓心且過焦點的圓O與橢圓相交于點P,則△F1PF2的面積等于


  1. A.
    8
  2. B.
    16
  3. C.
    32
  4. D.
    64
A
分析:由題意推出三角形是直角三角形,設(shè)出|PF1|=m,|PF2|=n,利用橢圓的定義求得n+m的值,平方后求得mn和m2+n2的關(guān)系,代入△F1PF2的勾股定理中求得mn的值,即可求出△F1PF2的面積.
解答:橢圓的焦點分別為F1、F2,以原點為圓心且過焦點的圓O與橢圓相交于點P,則△F1PF2是直角三角形,
因為,所以c2=8,a=4,
設(shè)|PF1|=m,|PF2|=n,
由橢圓的定義可知m+n=2a,
∴m2+n2+2nm=4a2
∴m2+n2=4a2-2nm
由勾股定理可知m2+n2=4c2,解得mn=16,
則△F1PF2的面積為8.
故選A.
點評:本題主要考查了橢圓的應(yīng)用,橢圓的簡單性質(zhì)和橢圓的定義.考查了考生對所學(xué)知識的綜合運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓
x2
a2
+
y2
b2
= 1
(a>b>0)的左右焦點分別為F1,F(xiàn)2,線段F1F2被拋物線y2=2bx的焦點F內(nèi)分成了3:1的兩段.
(1)求橢圓的離心率;
(2)過點C(-1,0)的直線l交橢圓于不同兩點A、B,且
AC
=2
CB
,當(dāng)△AOB的面積最大時,求直線l和橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右頂點,B(2,0),過橢圓C的右焦點F的直線交于其于點M,N,交直線x=4于點P,且直線PA,PF,PB的斜率成等差數(shù)列.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若記△AMB,△ANB的面積分別為S1,S2
S1
S2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•溫州二模)已知橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的上焦點為F,左、右頂點分別為B1,B2,下頂點為A,直線AB2與直線B1F交于點P,若
AP
=2
AB2
,則橢圓的離心率為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖北武漢市高三2月調(diào)研測試理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,矩形ABCD中,|AB|2,|BC|2E,FG,H分別矩形四條邊的中點,分別以HF,EG所在直線為x軸,y軸建立平面直角坐標系,已知λ,λ,其中0λ1

1)求證:直線ERGR′的交點M在橢圓Γy21上;

2N直線lyx2上且不在坐標軸上的任意一點,F1、F2分別為橢圓Γ的左、右焦點,直線NF1NF2與橢圓Γ的交點分別為P、QS、T是否存在點N,使直線OP、OQ、OSOT的斜率kOP、kOQkOS、kOT滿足kOPkOQkOSkOT0?若存在,求出點N的坐標;若不存在,說明理由

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓=1(a>b>0)的焦點分別為F1(-1,0)、F2(1,0),右準線l交x軸于點A,且.

(1)試求橢圓的方程;

(2)過F1、F2分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形DMEN面積的最大值和最小值.

(文)已知函數(shù)f(x)=x3+bx2+cx,b、c∈R,且函數(shù)f(x)在區(qū)間(-1,1)上單調(diào)遞增,在區(qū)間(1,3)上單調(diào)遞減.

(1)若b=-2,求c的值;

(2)求證:c≥3;

(3)設(shè)函數(shù)g(x)=f′(x),當(dāng)x∈[-1,3]時,g(x)的最小值是-1,求b、c的值.

查看答案和解析>>

同步練習(xí)冊答案