甲、乙、丙、丁四人參加奧運(yùn)會射擊項(xiàng)目選拔賽,四人的平均成績和方差如下表所示:
數(shù)學(xué)公式8.58.88.88
數(shù)學(xué)公式3.53.52.18.7
則參加奧運(yùn)會的最佳人選為________.


分析:甲的平均成績最小,乙和丙的平均成績比相等,且都比甲大,從方差上觀察三個(gè)人成績的穩(wěn)定程度,只有丙的樣本方差最小,即丙的成績最穩(wěn)定,得到最佳人選.
解答:由所給的表格知,
甲的平均成績最小,乙和丙的平均成績比相等,且都比甲大,
從方差上觀察三個(gè)人成績的穩(wěn)定程度,只有丙的樣本方差最小,
即丙的成績最穩(wěn)定,
∴參加奧運(yùn)會的最佳人選是丙,
故答案為:丙.
點(diǎn)評:本題考查平均數(shù)和方差的應(yīng)用,對于多組數(shù)據(jù),通常要求的是這組數(shù)據(jù)的方差和平均數(shù),用這兩個(gè)特征數(shù)來表示分別表示兩組數(shù)據(jù)的特征,幫助解決實(shí)際問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐的底面為菱形,PA⊥底面ABCD,E、F分別是AB與PD的中點(diǎn).
(1)求證:PC⊥BD;
(2)求證:AF∥平面PEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,在正方體ABCD-A1B1C1D1中,棱長為a,M、N分別為A1B和AC上的點(diǎn),A1M=AN=數(shù)學(xué)公式,則MN與平面BB1C1C的位置關(guān)系是


  1. A.
    相交
  2. B.
    平行
  3. C.
    垂直
  4. D.
    不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如果不共線向量數(shù)學(xué)公式滿足數(shù)學(xué)公式,那么向量數(shù)學(xué)公式的夾角為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知4x2+9y2=36,那么數(shù)學(xué)公式的最大值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

把8分成兩個(gè)正整數(shù)的和,其一個(gè)的立方與另一個(gè)的平方和最小,則這兩個(gè)正整數(shù)分別為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若x1,x2,x3,…,x2009的方差為3,則3(x1-2),3(x2-2),3(x3-2),…,3(x2009-2)的方差為


  1. A.
    3
  2. B.
    9
  3. C.
    18
  4. D.
    27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某旅游商品生產(chǎn)企業(yè),2007年某商品生產(chǎn)的投入成本為1元/件,出廠價(jià)為流程圖的輸
出結(jié)果p元/件,年銷售量為10000件,因2008年國家長假的調(diào)整,此企業(yè)為適應(yīng)市場需求,計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每件投入成本增加的比例為x(0<x<1),則出廠價(jià)相應(yīng)提高的比例為0.75x,同時(shí)預(yù)計(jì)銷售量增加的比例為0.8x.已知得利潤=(出廠價(jià)-投入成本)×年銷售量.
(Ⅰ)寫出2008年預(yù)計(jì)的年利潤y與投入成本增加的比例x的關(guān)系式;
(Ⅱ)為使2008年的年利潤比2007年有所增加,問:投入成本增加的比例x應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

若向量數(shù)學(xué)公式=(1,2),數(shù)學(xué)公式=(1,-3),則向量數(shù)學(xué)公式數(shù)學(xué)公式的夾角等于


  1. A.
    45°
  2. B.
    60°
  3. C.
    120°
  4. D.
    135°

查看答案和解析>>

同步練習(xí)冊答案