11.某中學(xué)高一、高二、高三年級(jí)分別有60人、30人、45人選修了學(xué)校開設(shè)的某門校本課程,學(xué)校用分層抽樣的方法從三個(gè)年級(jí)選修校本課程的人中抽取了一個(gè)樣本,了解學(xué)生對(duì)校本課程的學(xué)習(xí)情況.已知樣本中高三年級(jí)有3人.
(Ⅰ)分別求出樣本中高一、高二年級(jí)的人數(shù);
(Ⅱ)用Ai(i=1,2…)表示樣本中高一年級(jí)學(xué)生,Bi(i=1,2…)表示樣本中高二年級(jí)學(xué)生,現(xiàn)從樣本中高一、高二年級(jí)的所有學(xué)生中隨機(jī)抽取2人.
(。┯靡陨蠈W(xué)生的表示方法,采用列舉法列舉出上訴所有可能的情況;
(ⅱ)求(ⅰ)中2人在同一年級(jí)的概率.

分析 (Ⅰ)設(shè)抽取的樣本高一人數(shù)為a人,高二人數(shù)為b人,利用分層抽樣方性質(zhì)能求出樣本中高一人數(shù)和高二人數(shù).
(Ⅱ)(。┰O(shè)樣本中高一年級(jí)學(xué)生為A1,A2,A3,A4,高二年級(jí)學(xué)生為B1,B2,利用列舉法能列舉出從中抽取兩人的基本事件.
(ⅱ)求出2人在同一年級(jí)的基本事件個(gè)數(shù),由此能求出從中選取2人在同一年級(jí)的概率.

解答 解:(Ⅰ)設(shè)抽取的樣本高一人數(shù)為a人,高二人數(shù)為b人
由題意得$\frac{3}{45}=\frac{a}{60}=\frac{30}$∴a=4,b=2
即樣本中高一人數(shù)4人,高二人數(shù)2人.
(Ⅱ)(。┰O(shè)樣本中高一年級(jí)學(xué)生為A1,A2,A3,A4,高二年級(jí)學(xué)生為B1,B2
現(xiàn)從中抽取兩人的基本事件有:
(A1,A2)(A1,A3)(A1,A4)(A1,B1)(A1,B2)(A2,A3
(A2,A4)(A2,B1)(A2,B2)(A3,A4)(A3,B1)(A3,B2
(A4,B1)(A4,B2)(B1,B2)共有15種.
(ⅱ)其中2人在同一年級(jí)的基本事件有7種,
∴從中選取2人在同一年級(jí)的概率$P=\frac{7}{15}$.

點(diǎn)評(píng) 本題考查分層抽樣的應(yīng)用,考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若0≤θ<2π且同時(shí)滿足cosθ<sinθ和tanθ<sinθ,則θ的取值范圍是( 。
A.($\frac{π}{2}$,π)B.($\frac{π}{4}$,$\frac{3}{4}$π)C.(π,$\frac{3}{2}$π)D.($\frac{3}{4}$π,$\frac{5}{4}$π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下面四個(gè)條件中,使x>y成立的充分不必要的條件是( 。
A.$\frac{1}{y}>\frac{1}{x}>0$B.x>y-1C.x2>y2D.x3>y3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)離散型隨機(jī)變量ξ的分布列如下,則Dξ等于( 。
ξ102030
P0.6a0.1
A.55B.30C.15D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求下列函數(shù)的定義域:
(1)$y=ln({1+\frac{1}{x}})+\sqrt{1-{x^2}}$
(2)$y=\frac{ln(x+1)}{{\sqrt{-{x^2}-3x+4}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.函數(shù)f(x)=ln(x2-3x-4)的定義域?yàn)榧螦,函數(shù)g(x)=3x-a(x≤2)的值域?yàn)榧螧.
(1)求集合A,B;
(2)若集合A,B滿足B∩∁RB=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.高三某班有女同學(xué)15名,男同學(xué)30名,老師按照分層抽樣的方法組建一個(gè)6人的課外興趣小組.
(1)求課外興趣小組中男、女同學(xué)各應(yīng)抽取的人數(shù);
(2)在一周的技能培訓(xùn)后從這6人中選出A、B兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),實(shí)驗(yàn)結(jié)束后,A同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)為1.6、2、1.9、1.5、2,B同學(xué)得到的實(shí)驗(yàn)數(shù)據(jù)是2.1、18、1.9、2、2.2,請(qǐng)問哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說明理由.
參考公式:${s^2}=\frac{1}{n}[{{{({{x_1}-\overline x})}^2}+{{({{x_2}-\overline x})}^2}+…+{{({{x_n}-\overline x})}^2}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知直角坐標(biāo)系中的點(diǎn)A(-1,0),B(3,2),寫出求直線AB的方程的一個(gè)算法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)P:“關(guān)于x的不等式${x^2}-ax+a+\frac{5}{4}>0$的解集為R”,q:“方程$\frac{x^2}{4a+7}+\frac{y^2}{a-3}=1$表示雙曲線”.
(1)若q為真,求實(shí)數(shù)a的取值范圍;
(2)若p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案