1 |
m |
1 |
n |
4 |
x |
4 |
x |
1 |
m |
1 |
n |
1 |
m2 |
1 |
n2 |
(m+n)2-2mn |
m2n2 |
1 |
m2n2 |
2 |
mn |
1 |
mn |
mn |
1 |
4 |
1 |
mn |
1 |
mn |
4 |
x |
4 |
x |
4 |
x2 |
x2-4 |
x2 |
1 |
3 |
1 |
m |
1 |
n |
1 |
m2 |
1 |
n2 |
(m+n)2-2mn |
m2n2 |
1 |
m2n2 |
2 |
mn |
1 |
mn |
mn |
1 |
4 |
1 |
mn |
1 |
2 |
1 |
mn |
1 |
m |
1 |
n |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)0<x<c時(shí),求函數(shù)g(x)=f(x)+f(c-x)的最小值;
(3)已知m、n∈R+,證明:f(m)+f(n)>f(m+n)-(m+n).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求函數(shù)f(x)的解析式,并求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,]時(shí),f(x)的最大值為4,求a的值,并說明此時(shí)f(x)的圖象可由函數(shù)y=2sin(x+)的圖象經(jīng)過怎樣的平移和伸縮變換而得到.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求函數(shù)f(x)的解析式,并求函數(shù)f(x)在[0,π]上的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,]時(shí),f(x)的最大值為4,求a的值,并說明此時(shí)f(x)的圖象可由函數(shù)y=2sin(x+)的圖象經(jīng)過怎樣的平移和伸縮變換而得到.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com