若橢圓=1(a>b>0)兩準(zhǔn)線間的距離是焦距的3倍,則其離心率e為

[  ]

A.3  B.  C.   D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:013

若橢圓+=1(a>b>0)的長軸被圓x2+y2=b2與x軸的兩個交點(diǎn)三等分, 則橢圓的離心率為

[  ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)P(3,4)是橢圓+=1(a>b>0)上的一點(diǎn),F(xiàn)1、F2是橢圓的兩焦點(diǎn),若PF1⊥PF2,試求:

(1)橢圓方程;

(2)△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓=1(ab>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1PF2與橢圓的交點(diǎn)分別為ABC、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案