【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實數(shù)),設(shè),
(1)若f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立,求F(x)的表達式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求實數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.
【答案】(1).(2).(3) F(m)+F(n)>0.
【解析】
(1)由可得;然后再根據(jù)f(x)≥0恒成立并結(jié)合判別式可得a=1,進而可得函數(shù)的解析式.(2)由題意可得,根據(jù)函數(shù)有單調(diào)性可得對稱軸與所給區(qū)間的關(guān)系,從而可得k的取值范圍.(3)結(jié)合題意可得函數(shù)為奇函數(shù)且在R上為增函數(shù),再根據(jù)條件mn<0,m+n>0可得F(m)+F(n)>0.
(1)∵,
∴b=a+1.
∵f(x)≥0對任意實數(shù)x恒成立,
∴,
解得a=1.
∴f(x)=x2+2x+1.
故.
(2)由(1)知f(x)=x2+2x+1,
∴g(x)=f(x)-kx=x2+(2-k)x+1.
由g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù)可得或,
解得k≤-2或k≥6.
故k的取值范圍為.
(3)∵f(-x)=f(x),
∴f(x)為偶函數(shù),
∴b=0.
又a>0,
∴f(x)在區(qū)間[0,+∞)為增函數(shù).
對于F(x),當(dāng)x>0時,;
當(dāng)x<0時,,
∴,且F(x)在區(qū)間[0,+∞)上為增函數(shù),
∴在上為增函數(shù).
由mn<0,知m,n異號,不妨設(shè)m>0,n<0,
則有m>-n>0,
∴,
∴.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校高一年級有學(xué)生名,高二年級有學(xué)生名.現(xiàn)用分層抽樣方法(按高一年級、高二年級分二層)從該校的學(xué)生中抽取名學(xué)生,調(diào)查他們的數(shù)學(xué)學(xué)習(xí)能力.
(Ⅰ)高一年級學(xué)生中和高二年級學(xué)生中各抽取多少學(xué)生?
(Ⅱ)通過一系列的測試,得到這名學(xué)生的數(shù)學(xué)能力值.分別如表一和表二
表一:
高一年級 | |||||
人數(shù) |
表二:
高二年級 | |||||
人數(shù) |
①確定,并在答題紙上完成頻率分布直方圖;
②分別估計該校高一年級學(xué)生和高二年級學(xué)生的數(shù)學(xué)能力值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
③根據(jù)已完成的頻率分布直方圖,指出該校高一年級學(xué)生和高二年級學(xué)生的數(shù)學(xué)能力值分布特點的不同之處(不用計算,通過觀察直方圖直接回答結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列{an}的前n項和為Sn , 且滿足4Sn﹣1=an2+2an , n∈N* .
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項和為Tn , 證明: ≤Tn< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =( sin3x,﹣y), =(m,cos3x﹣m)(m∈R),且 + = .設(shè)y=f(x).
(1)求f(x)的表達式,并求函數(shù)f(x)在[ , ]上圖象最低點M的坐標(biāo).
(2)在△ABC中,f(A)=﹣ ,且A> π,D為邊BC上一點,AC= DC,BD=2DC,且AD=2 ,求線段DC的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在“六一”聯(lián)歡會上設(shè)有一個抽獎游戲.抽獎箱中共有12張紙條,分一等獎、二等獎、三等獎、無獎四種.從中任取一張,不中獎的概率為,中二等獎或三等獎的概率是.
(Ⅰ)求任取一張,中一等獎的概率;
(Ⅱ)若中一等獎或二等獎的概率是,求任取一張,中三等獎的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.
(1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;
(2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為 ,答對文科題的概率均為 ,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC邊上的高AM所在的直線方程為x-2y+1=0,∠A的平分線所在的直線方程為y=0與BC相交于點P,若點B的坐標(biāo)為(1,2).
(1)分別求AB和BC所在直線的方程;
(2)求P點坐標(biāo)和AC所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (k∈R).
(1)求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若k∈N*,且當(dāng)x∈(1,+∞)時,f(x)>0恒成立,求k的最大值.( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 甲、乙二人比賽,甲勝的概率為,則比賽5場,甲勝3場
B. 某醫(yī)院治療一種疾病的治愈率為10%,前9個病人沒有治愈,則第10個病人一定治愈
C. 隨機試驗的頻率與概率相等
D. 天氣預(yù)報中,預(yù)報明天降水概率為90%,是指降水的可能性是90%
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com