(1)已知橢圓以坐標(biāo)軸為對(duì)稱軸,且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,并且過點(diǎn)P(3,0),求橢圓的方程.

(2)已知橢圓的中心在原點(diǎn),以坐標(biāo)軸為對(duì)稱軸,且經(jīng)過兩點(diǎn)P1(,1)、P2(-,-),求橢圓的方程.

思路分析:(1)若焦點(diǎn)在x軸上,設(shè)方程為=1(ab>0).

∵橢圓過P(3,0),∴=1.

又2a=3×2b,∴a=3,b=1,方程為+y2=1.

若焦點(diǎn)在y軸上,設(shè)方程為=1(ab>0).

∵橢圓過點(diǎn)P(3,0),

=1.

又2a=3×2b,∴a=9,b=3.

∴方程為

∴所求橢圓的方程為+y2=1或

(2)設(shè)橢圓方程為mx2+ny2=1(m>0,n>0,且mn).

∵橢圓經(jīng)過P1、P2點(diǎn),∴P1、P2點(diǎn)坐標(biāo)適合橢圓方程,則

①、②兩式聯(lián)立,解得m=,n=.

∴所求橢圓方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且橢圓以拋物線y2=16x的焦點(diǎn)為其一個(gè)焦點(diǎn),以雙曲線
x2
16
-
y2
9
=1
的焦點(diǎn)為頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)A(-1,0),B(1,0),且C,D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)P是線段CD上的動(dòng)點(diǎn),求
AP
BP
的取值范圍.
(3)試問在圓x2+y2=a2上,是否存在一點(diǎn)M,使△F1MF2的面積S=b2(其中a為橢圓的半長(zhǎng)軸長(zhǎng),b為橢圓的半短軸長(zhǎng),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn)),若存在,求tan∠F1MF2的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且該橢圓以拋物線y2=16x的焦點(diǎn)P為其一個(gè)焦點(diǎn),以雙曲線
x2
16
-
y2
9
=1
的焦點(diǎn)Q為頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)A(-1,0),B(1,0),且C、D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)M是線段CD上的動(dòng)點(diǎn),求
AM
BM
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省四會(huì)市高三第三次統(tǒng)測(cè)文科數(shù)學(xué) 題型:解答題

(本小題滿分14分)

已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且該橢圓以拋物線的焦點(diǎn)為其一個(gè)焦點(diǎn),以雙曲線的焦點(diǎn)為頂點(diǎn)。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知點(diǎn),且C、D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)M是線段CD上的動(dòng)點(diǎn),求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三11月月考文科數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分)已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且該橢圓以拋物線的焦點(diǎn)為其一個(gè)焦點(diǎn),以雙曲線的焦點(diǎn)為頂點(diǎn)。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知點(diǎn),且分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)是線段上的動(dòng)點(diǎn),求的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年江蘇省無錫市部分學(xué)校高三4月聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且橢圓以拋物線y2=16x的焦點(diǎn)為其一個(gè)焦點(diǎn),以雙曲線的焦點(diǎn)為頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)A(-1,0),B(1,0),且C,D分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)P是線段CD上的動(dòng)點(diǎn),求的取值范圍.
(3)試問在圓x2+y2=a2上,是否存在一點(diǎn)M,使△F1MF2的面積S=b2(其中a為橢圓的半長(zhǎng)軸長(zhǎng),b為橢圓的半短軸長(zhǎng),F(xiàn)1,F(xiàn)2為橢圓的兩個(gè)焦點(diǎn)),若存在,求tan∠F1MF2的值,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案