【題目】如圖所示,在直角坐標(biāo)系中,點到拋物線的準(zhǔn)線的距離為.點是上的定點,,是上的兩動點,且線段的中點在直線上.
(Ⅰ)求曲線的方程及的值;
(Ⅱ)記,求的最大值.
【答案】(Ⅰ),.(Ⅱ).
【解析】分析:(Ⅰ)由拋物線準(zhǔn)線方程及P到準(zhǔn)線的距離,可求得,進而求得拋物線方程,將點M的坐標(biāo)代入拋物線 ,即可求得t.
(Ⅱ)求直線OM方程,點Q在直線OM上,根據(jù)直線方程表示點Q坐標(biāo),消去參數(shù)n,
利用點差法表示出直線AB斜率,進而求出直線方程,將直線AB方程與拋物線方程聯(lián)立,用弦長公式求弦長,從而將d表示為關(guān)于m的函數(shù),根據(jù)m范圍求最值.
詳解:(1)的準(zhǔn)線為,∴,∴,
∴拋物線的方程為.又點在曲線上,∴.
(2)由(1)知,點,從而,即點,
依題意,直線的斜率存在,且不為,
設(shè)直線的斜率為.且,,
由得,故,
所以直線的方程為,即.
由消去,整理得,
所以,,.
從而.
∴,
當(dāng)且僅當(dāng),即時,上式等號成立,
又滿足.∴的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體ABCDEF中,點O是矩形ABCD的對角線的交點,面CDE是等邊三角形,棱。
(1)證明FO∥平面CDE;
(2)設(shè)BC=CD,證明EO⊥平面CDE。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克,B原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗A、B原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是( )
A.1800元
B.2400元
C.2800元
D.3100元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小金同學(xué)在學(xué)校中貫徹著“邊玩邊學(xué)”的學(xué)風(fēng),他在“漢諾塔”的游戲中發(fā)現(xiàn)了數(shù)列遞推的奧妙:有、、三個木樁,木樁上套有編號分別為、、、、、、的七個圓環(huán),規(guī)定每次只能將一個圓環(huán)從一個木樁移動到另一個木樁,且任意一個木樁上不能出現(xiàn)“編號較大的圓環(huán)在編號較小的圓環(huán)之上”的情況,現(xiàn)要將這七個圓環(huán)全部套到木樁上,則所需的最少次數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義方程的實數(shù)根叫做函數(shù)的“新駐點”,若函數(shù),,的“新駐點”分別為,則的大小關(guān)系為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠利用隨機數(shù)表對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,,599,600從中抽取60個樣本,如下提供隨機數(shù)表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題:
①函數(shù)的最小正周期是;
②在直角坐標(biāo)系中,點,將向量繞點逆時針旋轉(zhuǎn)得到向量,則點的坐標(biāo)是;
③在同一直角坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有兩個公共點;
④函數(shù)在上是增函數(shù).
其中,正確的命題是________(填正確命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知數(shù)列是等比數(shù)列,且公比為,記是數(shù)列的前項和.
(1)若=1,>1,求的值;
(2)若首項,,是正整數(shù),滿足不等式|﹣63|<62,且對于任意正整數(shù)都成立,問:這樣的數(shù)列有幾個?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com