已知等差數(shù)列{}中,=14,前10項(xiàng)和. (1)求;
(2)將{}中的第2項(xiàng),第4項(xiàng),…,第項(xiàng)按原來的順序排成一個新數(shù)列{},令,求數(shù)列{}的前項(xiàng)和.

(Ⅰ)由 ∴   
 
(II)

解析試題分析:(Ⅰ)由 ∴   
 
(Ⅱ)由已知,    

考點(diǎn):等差數(shù)列的通項(xiàng)公式、求和公式,“錯位相減法”。
點(diǎn)評:中檔題,確定等差數(shù)列的通項(xiàng)公式,往往利用已知條件,建立相關(guān)元素的方程組,以達(dá)到解題目的!胺纸M求和法”“裂項(xiàng)相消法”“錯位相減法”等,是高考常常考查的數(shù)列求和方法。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,公差,且,成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1公比為3 的等比數(shù)列,求數(shù)列項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的首項(xiàng),公差.且分別是等比數(shù)列
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列對任意自然數(shù)均有 成立,求  的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

等差數(shù)列的前項(xiàng)和為,已知.
(1)求通項(xiàng)公式
(2)若.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,且,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,
①求數(shù)列的通項(xiàng)公式;
②若數(shù)列項(xiàng)和,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列滿足.
(Ⅰ)求
(Ⅱ)數(shù)列滿足 , 為數(shù)列的前項(xiàng)和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列中,,,數(shù)列中,,
(Ⅰ)求數(shù)列的通項(xiàng)公式,寫出它的前項(xiàng)和;
(Ⅱ)求數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1) 在等差數(shù)列中,已知,求;
(2)在等比數(shù)列中,已知,求。

查看答案和解析>>

同步練習(xí)冊答案