已知圓C以為圓心且經(jīng)過原點(diǎn)O

(Ⅰ)當(dāng)圓C半徑最小時(shí),求圓C的方程;

(Ⅱ)若直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程.

答案:
解析:

  解:(1)由題知,圓方程為,

  (Ⅰ),當(dāng)且僅當(dāng),即時(shí),

  此時(shí)圓方程為  5分

  (Ⅱ),則原點(diǎn)的中垂線上,

  設(shè)的中點(diǎn)為,則三點(diǎn)共線,則直線的斜率,知圓心,所以圓方程為  8分

  由于當(dāng)圓方程為時(shí),直線到圓心的距離,不滿足直線和圓相交,故舍去.

  方程為  10分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省臺(tái)州市仙居縣宏大中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓C以為圓心且經(jīng)過原點(diǎn)O.
(Ⅰ)若直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省金華一中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓C以為圓心且經(jīng)過原點(diǎn)O.
(Ⅰ)若直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年天津一中高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓C以為圓心且經(jīng)過原點(diǎn)O.
(1)若t=2,寫出圓C的方程;
(2)在(1)的條件下,已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省臺(tái)州市仙居縣宏大中學(xué)高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知圓C以為圓心且經(jīng)過原點(diǎn)O.
(Ⅰ)若直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年浙江省寧波市高一(下)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C以為圓心且經(jīng)過原點(diǎn)O.
(Ⅰ)若直線2x+y-4=0與圓C交于點(diǎn)M,N,若|OM|=|ON|,求圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,已知點(diǎn)B的坐標(biāo)為(0,2),設(shè)P,Q分別是直線l:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PB|+|PQ|的最小值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案