設(shè)橢圓 (a>b>0)的離心率e=,右焦點為F(c,0),方程ax2+bx+c=0的兩個實數(shù)根分別為x1和x2,則點P(x1,x2)必在( )
A.圓x2+y2=3內(nèi)
B.圓x2+y2=3上
C.圓x2+y2=3外
D.以上三種都可能
【答案】分析:由e=,知,由x1,x2是方程ax2+bx-c=0的兩個實根,知,,所以x12+x22=(x1+x22-2x1x2=,由此知點P(x1,x2)必在圓x2+y2=3內(nèi).
解答:解:∵e=,∴,
∵x1,x2是方程ax2+bx-c=0的兩個實根,
∴由韋達(dá)定理:,
所以x12+x22=(x1+x22-2x1x2
=,
所以點P(x1,x2)必在圓x2+y2=3內(nèi).
故選A.
點評:本題考查點和圓的位置關(guān)系,解題時要注意韋過定理和橢圓離心率的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系xOy中,設(shè)橢圓C:(ab>0)的左、右兩個焦點分別為F1、F2.過右焦點F2且與x軸垂直的直線l與橢圓C相交,其中一個交點為M(,1).

(1)求橢圓C的方程;

(2)設(shè)橢圓C的一個頂點為B(0,-b),直線BF2交橢圓C于另一點N,求△F1BN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓+=1(a>b>0)的左,右焦點分別為F1,F2,P(a,b)滿足|PF2|=|F1F2|.

(1)求橢圓的離心率e;

(2)設(shè)直線PF2與橢圓相交于A,B兩點.若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點,|MN|=|AB|,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓+=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.

(1)求橢圓的方程;

(2)設(shè)A,B分別為橢圓的左、右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.·+·=8,k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省高三高考極限壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓C:(“a>b〉0)的左焦點為,橢圓過點P()

(1)求橢圓C的方程;

(2)已知點D(1, 0),直線l:與橢圓C交于A、B兩點,以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆湖北省黃石市高二數(shù)學(xué)上學(xué)期期末考試 題型:解答題

設(shè)橢圓+=1(a>b>0)的左焦點為F1(-2,0),左準(zhǔn)線l1與x軸交于點N(-3,0),過點N且傾斜角為30°的直線l交橢圓于A、B兩點.

(1)求直線l和橢圓的方程;

(2)求證:點F1(-2,0)在以線段AB為直徑的圓上.

 

查看答案和解析>>

同步練習(xí)冊答案