精英家教網 > 高中數學 > 題目詳情
若x∈[0,π],則函數y=sinxcosx的單調遞減區(qū)間是
 
考點:二倍角的正弦
專題:三角函數的圖像與性質
分析:利用三角函數的倍角公式,將函數進行化簡,利用三角函數的圖象和性質即可得到結論.
解答: 解:y=sinxcosx=sin2x,
π
2
+2kπ≤2x≤2kπ+
2
,
π
4
+kπ≤x≤kπ+
4
,k∈Z,
當k=0時,函數的單調遞減區(qū)間為[
π
4
,
4
],
故答案為:[
π
4
4
].
點評:本題主要考查三角函數的圖象和性質,利用三角函數的倍角公式將函數進行化簡是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖所示,銳角α和鈍角β的始邊與x軸的非負半軸重合,終邊分別與單位圓交于A、B兩點,角α的終邊與射線y=x(x≥0)重合,點B的縱坐標為
3
5

(1)求sin(β-α);
(2)D為OB邊上的一點,且AD=
37
5
,求△AOD的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

若三個非零且互不相等的實數a,b,c滿足
1
a
+
1
b
=
2
c
,則稱a,b,c是調和的;若滿足a+c=2b,則稱a,b,c是等差的.已知集合P={a,b,c},若P中元素a,b,c既是調和的,又是等差的,則稱集合P為“好集”.
①請寫出一個好集
 
;
②若集合M={x||x|≤2014,x∈Z},P⊆M,則不同的“好集”P的個數為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知z(1+i)2=2i,則|z|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知集合A={x|x>5},集合B={x|x<a},若A∩B={x|5<x<6},則實數a的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

定義域為D的單調函數y=f(x),如果存在區(qū)間[a,b]⊆D,滿足當定義域為是[a,b]時,f(x)的值域也是[a,b],則稱[a,b]是該函數的“可協調區(qū)間”;如果函數y=
(a2+a)x-1
a2x
(a≠0)的一個可協調區(qū)間是[m,n],則n-m的最大值是( 。
A、2
B、3
C、
2
3
3
D、4

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=
sin2x
的一個單調遞減區(qū)間為( 。
A、(-
π
4
π
4
B、(
π
4
4
C、(
π
4
π
2
D、(0,
π
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知F1,F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左右焦點,弦AB經過F2點,若A點在x軸的下方,且|AF2|=2|F2B|,
AF1
BF1
=
16
9
a2,則∠F1AB=(  )
A、
12
B、
π
2
C、
3
D、
3

查看答案和解析>>

科目:高中數學 來源: 題型:

a
=(cosx-sinx,2sinx),
b
=(cosx+sinx,cosx),f(x)=
a
b
,將函數f(x)的圖象平移而得到函數g(x)=
2
cos2x-1,則平移方法可以是( 。
A、左移
π
8
個單位,下移1個單位
B、左移
π
4
個單位,下移1個單位
C、右移
π
4
個單位,上移1個單位
D、左移
π
8
個單位,上移1個單位

查看答案和解析>>

同步練習冊答案