設(shè)有極值,
(Ⅰ)求的取值范圍;
(Ⅱ)求極大值點和極小值點.
時,極大值點為,極小值點為。

試題分析:,當,單調(diào)遞增無極值,








-
0
+
0
-


 

 

所以的極大值點為,極小值點為
點評:中檔題,利用導(dǎo)數(shù)研究函數(shù)的極值,一般遵循“求導(dǎo)數(shù)、求駐點、研究導(dǎo)數(shù)的正負、確定極值”,利用“表解法”,清晰易懂。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù) 
(1)證明 當,時,;
(2)討論在定義域內(nèi)的零點個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(Ⅰ)求的極值;
(Ⅱ)當時,若不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(即函數(shù)取到極值時點的橫坐標).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(I)若,判斷函數(shù)在定義域內(nèi)的單調(diào)性;
(II)若函數(shù)在內(nèi)存在極值,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義在R上的可導(dǎo)函數(shù)f(x),且f(x)圖像連續(xù),當x≠0時, ,則函數(shù)的零點的個數(shù)為( 。
A.1B.2C.0D.0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) 在區(qū)間[-2,2]的最大值為20,求它在該區(qū)間的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)在(1,4)上是減函數(shù),則實數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題p:函數(shù)R上的減函數(shù);命題q:在時,不等式恒成立,若pq是真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案