已知函數(shù).對(duì)于任意實(shí)數(shù)x恒有

1)求實(shí)數(shù)的最大值;

2)當(dāng)最大時(shí),函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)k的取值范圍。

 

【答案】

13;2

【解析】

試題分析:(1)根據(jù)函數(shù)求出導(dǎo)函數(shù),再根據(jù)所給的不等式,利用恒成立的條件求出實(shí)數(shù)的范圍,從而確定的最大值.

2)由(1)可得的值,從而根據(jù)函數(shù)確定函數(shù)的解析式,由于函數(shù)有三個(gè)零點(diǎn),所以通過對(duì)函數(shù)求導(dǎo),了解函數(shù)的圖像的走向,以及對(duì)函數(shù)的極值的正負(fù)性作出規(guī)定,即可得到所需的結(jié)論.

試題解析:(1 對(duì)于恒有,即對(duì)于恒成立

2個(gè)零點(diǎn)

有三個(gè)不同的實(shí)根 ,則

解得

情況如下表:

+

0

0

+

單調(diào)遞增

極大值8

單調(diào)遞減

極小極

單調(diào)遞增

由上表知,當(dāng)時(shí)取得極大值,當(dāng)時(shí)取得極小值

數(shù)形結(jié)合可知,實(shí)數(shù)的取值范圍為 .

考點(diǎn):1.函數(shù)的導(dǎo)數(shù).2.函數(shù)的最值.3.函數(shù)的極值.4.函數(shù)與方程的關(guān)系.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•閘北區(qū)一模)設(shè)f(x)=2cos2x+
3
sin2x
,g(x)=
1
2
f(x+
12
)+ax+b
,其中a,b為非零實(shí)常數(shù).
(1)若f(x)=1-
3
,x∈[-
π
3
,
π
3
]
,求x;
(2)若x∈R,試討論函數(shù)g(x)的奇偶性,并證明你的結(jié)論;
(3)已知:對(duì)于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),當(dāng)且僅當(dāng)x1=x2時(shí),等號(hào)成立.若a≥2,求證:函數(shù)g(x)在R上是遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+alnx-2(a>0)
(Ⅰ)若曲線y=f(x)在點(diǎn)P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于任意的x∈(0,+∞),都有f(x)>2(a-1)成立,試求實(shí)數(shù)a的取值范圍;
(Ⅲ)記g(x)=f(x)+x-b(b∈R).當(dāng)a=1時(shí),方程g(x)=0在區(qū)間[e-1,e]上有兩個(gè)不同的實(shí)根,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:荊門市2008屆高三數(shù)學(xué)試題(理)模擬訓(xùn)練題 題型:022

有如下四個(gè)命題:

①已知函數(shù)(b為實(shí)常數(shù),e是自然對(duì)數(shù)的底數(shù)),若f(x)在區(qū)間[1,+∞)內(nèi)為減函數(shù),則b的取值范圍是(0,+∞).

②已知點(diǎn)A(x1,y1),B(x2,y2)是函數(shù)y=sinx(-π<x<0)圖象上的兩個(gè)不同點(diǎn),則一定有;

③已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)于任意的a,b∈R,滿足:f(ab)=af(b)+bf(a),f(2)=2,an(n∈N*),則數(shù)列{an}一定為等差數(shù)列

④已知O是△ABC所在平面上一定點(diǎn),動(dòng)點(diǎn)P滿足:.則P點(diǎn)的軌跡一定通過△ABC的重心其中正確命題的序號(hào)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)學(xué)公式,數(shù)學(xué)公式,其中a,b為非零實(shí)常數(shù).
(1)若數(shù)學(xué)公式,數(shù)學(xué)公式,求x;
(2)若x∈R,試討論函數(shù)g(x)的奇偶性,并證明你的結(jié)論;
(3)已知:對(duì)于任意x1,x2∈R,恒有sin2x1-sin2x2≤2(x1-x2),當(dāng)且僅當(dāng)x1=x2時(shí),等號(hào)成立.若a≥2,求證:函數(shù)g(x)在R上是遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)對(duì)于定義域中的任意實(shí)數(shù),都存在實(shí)常數(shù)滿足

,則稱關(guān)于點(diǎn)對(duì)稱.

(1)已知函數(shù)的圖象關(guān)于對(duì)稱,求實(shí)數(shù)的值;

(2)在(1)的結(jié)論下,已知 ,若對(duì)于任意的正實(shí)數(shù)和負(fù)實(shí)數(shù) ,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案