已知在與處都取得極值.
(1)求,的值;
(2)設(shè)函數(shù),若對任意的,總存在,使得:,求實(shí)數(shù)的取值范圍.
(1);(2).
【解析】
試題分析:(1)根據(jù)條件,可得,由在與處都取得極值,可知,故可建立關(guān)于的二元一次方程組,從而解得,此時(shí),需要代回檢驗(yàn)是否確實(shí)是的極值點(diǎn),經(jīng)檢驗(yàn)符合題意,從而;(2)由(1)可得由(1)知:函數(shù)在上遞減,
∴ ,因此問題就等價(jià)于求使當(dāng)時(shí),恒成立的的取值范圍,而二次函數(shù)圖像的對稱軸是,因此需對的取值作出以下三種情況的分類討論:①:;②:;③,分別用含的代數(shù)式表示上述三種情況下的最小值表示出來,從而可以建立關(guān)于的不等式,進(jìn)而求得的取值范圍為.
試題解析:(1)∵,∴ 1分
∵在與處都取得極值,
∴,∴ 4分
經(jīng)檢驗(yàn),當(dāng)時(shí),,
∴函數(shù)在與處都取得極值,∴ 6分;
(2)由(1)知:函數(shù)在上遞減,
∴ 8分
又 ∵函數(shù)圖象的對稱軸是,
①:當(dāng)時(shí):,顯然有成立, ∴ ,
②:當(dāng)時(shí):,∴, 解得:,
又∵ ,∴.
③:當(dāng)時(shí):,∴ , ∴, 又,∴
綜上所述: 12分,
∴實(shí)數(shù)的取值范圍為 13分.
考點(diǎn):1.導(dǎo)數(shù)的運(yùn)用;2.二次函數(shù)與恒成立問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆湖北省武漢市高三9月調(diào)考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知向量,的夾角為45°,且,,則=( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二4月月考數(shù)學(xué)試卷(解析版) 題型:選擇題
已知復(fù)數(shù),則的值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省咸寧市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
是函數(shù)為偶函數(shù)的 _________ 條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省咸寧市高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
準(zhǔn)線為的拋物線的標(biāo)準(zhǔn)方程是( )
A.y2=﹣4x B.y2=﹣8x C.y2=4x D.y2=8x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二5月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題
某地區(qū)為了綠化環(huán)境進(jìn)行大面積植樹造林,如圖,在區(qū)域 內(nèi)植樹,第一棵
樹在點(diǎn)Al(0,1),第二棵樹在點(diǎn).B1(l, l),第三棵樹在點(diǎn)C1(1,0),第四棵樹在點(diǎn)C2(2,0),接著按
圖中箭頭方向每隔一個單位種一棵樹,那么
(1)第n棵樹所在點(diǎn)坐標(biāo)是(44,0),則n= .
(2)第2014棵樹所在點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二5月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
極坐標(biāo)方程表示的曲線為( )
A.極點(diǎn) B.極軸 C.一條直線 D.兩條相交直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆湖北省高二5月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
用數(shù)學(xué)歸納法證明()時(shí),從“n=”到“n=”的證明,左邊需增添的代數(shù)式是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆浙江省金華十校高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知圓C的圓心是直線x﹣y+1=0與x軸的交點(diǎn),且圓C與直線x+y+3=0相切.則圓C的方程為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com