已知直三棱柱ABC-A1B1C1的6個(gè)頂點(diǎn)都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12.則球O的半徑為(  )

A.  B.2  C.  D.3

 

【答案】

C

【解析】

試題分析:因?yàn)槿庵?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041704501637504586/SYS201404170450517187998929_DA.files/image001.png">的6個(gè)頂點(diǎn)都在球的球面上,,,,,所以三棱柱的底面是直角三角形,側(cè)棱與底面垂直,側(cè)面,經(jīng)過(guò)球的球心,球的直徑是其對(duì)角線的長(zhǎng),因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014041704501637504586/SYS201404170450517187998929_DA.files/image003.png">,,,,所以球的半徑為:.

故選

考點(diǎn):1.球內(nèi)接多面體;2.點(diǎn)、線、面間的距離計(jì)算.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直三棱柱ABC-A1B1C1,∠ACB=90°,AC=BC=2,AA1=4.E、F分別是棱CC1、AB中點(diǎn).
(Ⅰ)求證:CF⊥BB1;
(Ⅱ)求四棱錐A-ECBB1的體積;
(Ⅲ)判斷直線CF和平面AEB1的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直三棱柱ABC-A1B1C1的所有棱長(zhǎng)都相等,且D,E,F(xiàn)分別為BC,BB1,AA1的中點(diǎn).
(I) 求證:平面B1FC∥平面EAD;
(II)求證:BC1⊥平面EAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知直三棱柱ABC-A′B′C′,AC=AB=AA′=2,AC,AB,AA′兩兩垂直,E,F(xiàn),H分別是AC,AB,BC的中點(diǎn),
(I)證明:EF⊥AH;    
(II)求四面體E-FAH的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)為2,底面△ABC是等腰直角三角形,且∠ACB=90°,AC=2,D是A A1的中點(diǎn).
(Ⅰ)求異面直線AB和C1D所成的角(用反三角函數(shù)表示);
(Ⅱ)若E為AB上一點(diǎn),試確定點(diǎn)E在AB上的位置,使得A1E⊥C1D;
(Ⅲ)在(Ⅱ)的條件下,求點(diǎn)D到平面B1C1E的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直三棱柱ABC-A1B1C1中,AB=AC;M.N.P分別是棱BC.CC1.B1C1的中點(diǎn).A1Q=3QA, BC=
2
AA1

(Ⅰ)求證:PQ∥平面ANB1;
(Ⅱ)求證:平面AMN⊥平面AMB1

查看答案和解析>>

同步練習(xí)冊(cè)答案