(x2+
1
x2
-2)4的展開(kāi)式中常數(shù)項(xiàng)是(  )
A、30B、40C、70D、120
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:計(jì)算題,二項(xiàng)式定理
分析:利用二項(xiàng)式定理求出通項(xiàng)公式,x的冪指數(shù)為0,即可求出常數(shù)項(xiàng).
解答: 解:(x2+
1
x2
-2)4=(x-
1
x
8的展開(kāi)式的通項(xiàng)公式:Tr+1=(-1)r•C8rx8-2r,
由8-2r=0,r=4,知常數(shù)項(xiàng)T5=C84=70.
故選:C.
點(diǎn)評(píng):本題考查二項(xiàng)式定理的應(yīng)用,解題時(shí)要注意通項(xiàng)公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,點(diǎn)(an,an+1)(n∈N*)在直線x-y+1=0上,且a2=2.
(Ⅰ)求證:數(shù)列{an}是等差數(shù)列,并求an;
(Ⅱ)設(shè)bn=2 an,數(shù)列{bn}的前n項(xiàng)和為Sn,若對(duì)?n∈N*,Sn≥λ•2n成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖的正方形ABCD邊長(zhǎng)為1,P,Q為線段BC,CD上的動(dòng)點(diǎn),設(shè)∠PAB=θ,且tanθ=t,∠PAQ=45°.
(1)試用t表示線段PQ;
(2)探究△QAP的周長(zhǎng)是否為定值;
(3)試求四邊形APCQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為2的正方形有一封閉曲線圍成的陰影區(qū)域,在正方形中隨機(jī)撒一粒豆子,它落在陰影區(qū)域內(nèi)的概率為
2
3
,則陰影區(qū)域的面積為(  )
A、
2
3
B、
4
3
C、
8
3
D、無(wú)法計(jì)算

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x0,x0+
π
2
是凼數(shù)f(x)=2cos2ωx+sin(2ωx-
π
6
)(ω>0)的相鄰兩個(gè)零點(diǎn).
(1)求ω的值;
(2)設(shè)a,b,c分別是△ABC三個(gè)內(nèi)角A,B,C所對(duì)的邊,若f(A)=
3
2
,且
b
tanB
+
c
tanC
=
2a
tanA
,試判斷△ABC的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-
1
x
-alnx
(1)若f(x)無(wú)極值點(diǎn),求a的取值范圍;
(2)設(shè)g(x)=x+
1
x
-(lnx)2,當(dāng)a。1)中的最大值時(shí),求g(x)的最小值;
(3)證明不等式:
n
i=1
1
2i(2i+1)
>ln
2n+1
2n+1
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線2x-4y+9=0關(guān)于點(diǎn)A(2,2)對(duì)稱(chēng)的直線方程為(  )
A、2x-4y-1=0
B、2x+4y-1=0
C、2x+4y+1=0
D、4x+2y-1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(1+
1
2
+
1
3
+
1
4
+…+
1
201404
2+(
1
2
+
1
3
+
1
4
+…+
1
201404
2+(
1
3
+
1
4
+…+
1
201404
2+…+(
1
201404
2+(1+
1
2
+
1
3
+
1
4
+…+
1
201404
).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列關(guān)系式,正確的是( 。
A、(
1
3
-2<(
1
3
2
B、log 
2
3
3
2
<log 
1
3
2
C、0.52.3>0.62.3
D、log34<log0.30.4

查看答案和解析>>

同步練習(xí)冊(cè)答案