已知橢圓:的左右焦點(diǎn)分別為,離心率為,兩焦點(diǎn)與上下頂點(diǎn)形成的菱形面積為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)過(guò)點(diǎn)的直線與橢圓交于A, B兩點(diǎn),四邊形為平行四邊形,為坐標(biāo)原點(diǎn),且,求直線的方程.
(Ⅰ)橢圓的方程: ……………………………………………………4分
(Ⅱ)首先,直線的斜率不存在時(shí),,,舍去;
設(shè)直線的方程為: ,代入橢圓方程:

所以,設(shè),則
  及得:
,結(jié)合韋達(dá)定理可求出
, ,所以所求直線的方程為:  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)在平面直角坐標(biāo)系中,的兩個(gè)頂點(diǎn)的坐標(biāo)分別為,平面內(nèi)兩點(diǎn)同時(shí)滿足一下條件:①;②;③
(1)求的頂點(diǎn)的軌跡方程;
(2)過(guò)點(diǎn)的直線與(1)中的軌跡交于兩點(diǎn),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過(guò)原點(diǎn)的直線交橢圓,兩點(diǎn),線段的中點(diǎn)為,射線交橢圓于點(diǎn),交直線于點(diǎn).
(Ⅰ)求的最小值;
(Ⅱ)若?,(i)求證:直線過(guò)定點(diǎn);
(ii)試問(wèn)點(diǎn),能否關(guān)于軸對(duì)稱?若能,求出此時(shí)的外接圓方程;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線經(jīng)過(guò)橢圓的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),則該橢圓的離心率為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知橢圓的焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P為橢圓上任意一點(diǎn),過(guò)F2的外角平分線的垂線,垂足為點(diǎn)Q,過(guò)點(diǎn)Q作軸的垂線,垂足為N,線段QN的中點(diǎn)為M,則點(diǎn)M的軌跡方程為     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的左、右焦點(diǎn)分別為,直線過(guò)與橢圓相交于兩點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓恰好過(guò),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分
已知定點(diǎn),B是圓(C為圓心)上的動(dòng)點(diǎn),AB的垂直平分線與BC交于點(diǎn)E。
(1)求動(dòng)點(diǎn)E的軌跡方程;
(2)設(shè)直線與E的軌跡交于P,Q兩點(diǎn),且以PQ為對(duì)角線的菱形的一頂點(diǎn)為(-1,0),求:OPQ面積的最大值及此時(shí)直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果方程x2+ky2=2表示焦點(diǎn)在y軸的橢圓,那么實(shí)數(shù)k的取值范圍是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)A(5,0)和⊙B:,P是⊙B上的動(dòng)點(diǎn),直線BP與線段AP的垂直平分線交于點(diǎn)Q,則點(diǎn)Q(x,y)所滿足的軌跡方程為  ( ▲ )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案