5.已知菱形ABCD的兩個(gè)頂點(diǎn)坐標(biāo):A(-2,1),C(0,5),則對(duì)角線BD所在直線方程為( 。
A.x+2y-5=0B.2x+y-5=0C.x-2y+5=0D.2x-y+5=0

分析 由已知可求KAC,AC的中點(diǎn),然后由菱形的對(duì)角線互相垂直平分可求KBD,利用直線方程的點(diǎn)斜式可求.

解答 解:∵A(-2,1),C(0,5),
∴KAC=2,AC的中點(diǎn)M(-1,3)
由菱形的對(duì)角線互相垂直平分可得,KBD=-$\frac{1}{2}$,
∴BD所在的直線 方程為:y-3=(-$\frac{1}{2}$)(x+1),即x+2y-5=0.
故選A.

點(diǎn)評(píng) 本題主要考查了直線垂直關(guān)系的應(yīng)用及直線方程的求解,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知點(diǎn)A(3,5)及直線l:x-2y+2=0,B為y軸上的動(dòng)點(diǎn),C為l上的動(dòng)點(diǎn),則△ABC的周長的最小值為4$\sqrt{5}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知正項(xiàng)數(shù)列{an}為等比數(shù)列,且5a2是a4與3a3的等差中項(xiàng),若a2=2,則該數(shù)列的前6項(xiàng)的和為( 。
A.126B.63C.64D.127

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)$y=sin(2x+\frac{π}{3})-1$,$x∈(0,\frac{π}{3})$的值域?yàn)椋?,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)$y=cos(2x-\frac{π}{3})$的單調(diào)遞增區(qū)間是(  )
A.$[2kπ-\frac{π}{3},2kπ+\frac{π}{6}]$k∈ZB.$[kπ+\frac{π}{6},kπ+\frac{2π}{3}]$k∈Z
C.$[kπ-\frac{π}{3},kπ+\frac{π}{6}]$k∈ZD.$[2kπ+\frac{π}{6},2kπ+\frac{2π}{3}]$k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,AB是⊙O的直徑,CB與⊙O相切與點(diǎn)B,E為線段CB上一點(diǎn),
連結(jié)AC、AE,分別交⊙O于D、G兩點(diǎn),連結(jié)DG并延長交CB于點(diǎn)F,
若EB=3EF,EG=1,GA=3,求線段CE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\frac{{x}^{3}}{3}$-$\frac{2}$x2+ax+c(a>0,b>0)則函數(shù)g(x)=alnx+$\frac{f′(x)}{a}$在點(diǎn)(b,g(b))處切線的斜率最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.海南華僑中學(xué)三亞學(xué)校2016年元旦晚會(huì)即將到來,現(xiàn)有高三2班3名學(xué)生,其中2名男生;高三3班5名學(xué)生,其中3名男生.要從這8名學(xué)生中隨機(jī)選擇4人參加元旦晚會(huì)的開場(chǎng)舞.
(Ⅰ)設(shè)A為事件“選出的4人中恰有2 名男生,且這2名男生來自同一個(gè)班”,求事件A發(fā)生的概率;
(Ⅱ)設(shè)X為選出的4人中男生的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x|x>1},B={x|0<x<2},則B∩∁RA=( 。
A.(1,2)B.[1,+∞)C.(0,1]D.(-∞,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案