已知Sn為數(shù)列{an}的前n項(xiàng)和,=(Sn,1),=(-1,2an+2n+1),
(1)證明:數(shù)列為等差數(shù)列;
(2)若,且存在n,對(duì)于任意的k(k∈N+),不等式成立,求n的值.
【答案】分析:(1)利用向量的數(shù)量積公式得到數(shù)列遞推式,再寫一式,兩式相減,即可證得結(jié)論;
(2)先求出數(shù)列的通項(xiàng),利用bn+1≥bn,確定n的范圍,由此可得結(jié)論.
解答:(1)證明:∵=(Sn,1),=(-1,2an+2n+1),


兩式相減可得,∴=-1
-=-1
∴數(shù)列為等差數(shù)列;
(2)解:∵n=1時(shí),,∴a1=-4,∴
=-2-(n-1)=-(n+1),
=(2011-n)×2n,
令bn+1≥bn,則(2010-n)×2n+1≥(2011-n)×2n,∴n≤2009
∴當(dāng)1≤n<2009時(shí),bn+1>bn,當(dāng)n=2009時(shí),bn=bn+1
當(dāng)n>2009時(shí),bn+1<bn∴b1<b2<…<b2009=b2010>b2011>…
∴n=2009或2010.
點(diǎn)評(píng):本題考查向量的數(shù)量積,考查數(shù)列遞推式,考查等差數(shù)列的證明.考查數(shù)列的通項(xiàng),正確求通項(xiàng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=2an+n2-3n-2,n=1,2,3….
(Ⅰ)求證:數(shù)列{an-2n}為等比數(shù)列;
(Ⅱ)設(shè)bn=an•cosnπ,求數(shù)列{bn}的前n項(xiàng)和Pn;
(Ⅲ)設(shè)cn=
1
an-n
,數(shù)列{cn}的前n項(xiàng)和為Tn,求證:Tn
37
44

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,點(diǎn)列(n,
Sn
n
)(n∈N+)
在直線y=x上.
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求數(shù)列{
1
anan+1
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,且3Sn+an=1,數(shù)列{bn}滿足bn+2=3lo
g
 
1
4
an
,數(shù)列{cn}滿足cn=bn•an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,Sn=
1
2
n2+
11
2
n
;數(shù)列滿足:b3=11,bn+2=2bn+1-bn,其前9項(xiàng)和為153
(1){bn}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列{cn}的前n項(xiàng)和,cn=
6
(2an-11)(2bn-1)
,求使不等式T n
k
57
對(duì)?n∈N+都成立的最大正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=2an+n2-3n-2(n∈N*
(I)求證:數(shù)列{an-2n}為等比數(shù)列;
(II)設(shè)bn=an•cosnπ,求數(shù)列{bn}的前n項(xiàng)和Pn

查看答案和解析>>

同步練習(xí)冊(cè)答案