【題目】(導(dǎo)學(xué)號:05856308)(12分)

如圖,∠ABC,OAB上一點,3OB=3OC=2ABPO⊥平面ABC,2DA=2AOPO,OA=1,且DAPO.

(Ⅰ)求證:平面PBD⊥平面COD;

(Ⅱ)求點O到平面BDC的距離.

【答案】(1) 見解析(2)

【解析】試題分析:(1)利用勾股定理得出PDOD,由OC⊥平面ABPD得出OCPD,于是PD⊥平面COD,從而有平面PBD⊥平面COD;

(2)由計算可求BD,BC,CD的值,利用余弦定理可求cosBCD,利用同角三角函數(shù)基本關(guān)系式可求sinBCD的值,利用三角形面積公式可求SBCD,SBOC的值,利用體積相等VO﹣BCD=VD﹣BOC,即可得解點O到平面BDC的距離.

試題解析:

(Ⅰ)因為OA=1,所以POOB=2,DA=1.

DAPOPO⊥平面ABC,知DA⊥平面ABC,∴DAAO,

從而DOPD.在△PDO中,∵PO=2,∴△PDO為直角三角形,故PDDO.

又∵OCOB=2,∠ABC,∴COAB,又PO⊥平面ABC,

POOC,又POABO,∴CO⊥平面PAB,故COPD.∵CODOO,

PD⊥平面COD.又PD平面PBD,∴平面PBD⊥平面COD.

(Ⅱ)由計算得BD,BC=2,CD,所以cos∠BCD,所以sin∠BCD,

所以SBCD×2××

SBOC×2×2=2.

VOBCDVDBOC,所以××d×1×2,解得d,即點O到平面BDC的距離為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856263)

已知拋物線y2=2px(p>0)的準線與x軸交于點N,過點N作圓M:(x-2)2y2=1的兩條切線,切點為P、Q,且|PQ|=.

(Ⅰ)求拋物線的方程;

(Ⅱ)過拋物線的焦點F作斜率為k1的直線與拋物線交于AB兩點,A、B兩點的橫坐標均不為2,連接AM,BM并延長分別交拋物線于C、D兩點,設(shè)直線CD的斜率為k2,問是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-5:不等式選講]

已知函數(shù)f(x)=|2x+1||2x﹣3|,g(x)=|x+1|+|x﹣a|

(l)求fx≥1的解集;

(2)若對任意的tR,sR,都有g(s)f(t).求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)選修4-2:矩陣與變換

求矩陣的特征值和特征向量.

(2)選修4-4:坐標系與參數(shù)方程

在極坐標系中,圓的方程為,以極點為坐標原點,極軸為軸的正半軸建立平面直角坐標系,圓的參數(shù)方程是參數(shù)),若圓與圓相切,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856295)德國大數(shù)學(xué)家高斯年少成名,被譽為數(shù)學(xué)王子.19歲的高斯得到了一個數(shù)學(xué)史上非常重要的結(jié)論,就是《正十七邊形尺規(guī)作圖之理論與方法》, 在其年幼時,對1+2+3+…+100的求和運算中,提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應(yīng)項的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也被稱為高斯算法.現(xiàn)有函數(shù)f(x)=,則f(1)+f(2)+…+f(m+2017)等于(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高科技企業(yè)生產(chǎn)產(chǎn)品A和產(chǎn)品B需要甲、乙兩種新型材料.生產(chǎn)一件產(chǎn)品A需要甲材料1.5 kg,乙材料1 kg,用5個工時;生產(chǎn)一件產(chǎn)品B需要甲材料0.5 kg,乙材料0.3 kg,用3個工時,生產(chǎn)一件產(chǎn)品A的利潤為2100元,生產(chǎn)一件產(chǎn)品B的利潤為900.該企業(yè)現(xiàn)有甲材料150 kg,乙材料90 kg,則在不超過600個工時的條件下,生產(chǎn)產(chǎn)品A、產(chǎn)品B的利潤之和的最大值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(導(dǎo)學(xué)號:05856331)

甲、乙兩家快餐店對某日7個時段的光顧的客人人數(shù)進行統(tǒng)計并繪制莖葉圖如下圖所示(下面簡稱甲數(shù)據(jù)、乙數(shù)據(jù)),且乙數(shù)據(jù)的眾數(shù)為17,甲數(shù)據(jù)的平均數(shù)比乙數(shù)據(jù)平均數(shù)少2.

(Ⅰ)求a,b的值,并計算乙數(shù)據(jù)的方差;

(Ⅱ)現(xiàn)從乙數(shù)據(jù)中不大于16的數(shù)據(jù)中隨機抽取兩個,求至少有一個數(shù)據(jù)小于10的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為A的函數(shù)f(x),若對任意的x1,x2A,都有f(x1x2)f(x1)≤f(x2),則稱函數(shù)f(x)定義域上的M函數(shù),給出以下五個函數(shù):

f(x)2x3,xR;f(x)x2,xf(x)x21,x;f(x)sin xx;f(x)log2x,x[2,+∞)

其中是定義域上的M函數(shù)的有(  )

A. 2 B. 3

C. 4 D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1時,求上的單調(diào)區(qū)間;

2, 均恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案