已知y=f(x)為R上的奇函數(shù),且滿足f(2+x)=f(2-x),f(6)=3,若sinα=2cosα,則f(2013sin2α-sinαcosα)=
 
考點(diǎn):函數(shù)奇偶性的判斷
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用,三角函數(shù)的求值
分析:由商的關(guān)系求出tanα=2,再由平方關(guān)系求出2013sin2α-sinαcosα的值,根據(jù)f(2+x)=f(2-x),及奇函數(shù)的定義,可得f(x)為周期為8的函數(shù),再由周期即可得到所求值.
解答: 解:∵sinα=2cosα,∴tanα=2,
則2013sin2α+sinα•cosα=
2013sin2α-sinαcosα
sin2α+cos2α

=
2013tan2α-tanα
tan2α+1
=
2013×4-2
4+1
=1610,
∵f(x+2)=f(2-x),則f(-x)=f(x+4),
y=f(x)為R上的奇函數(shù),則f(-x)=-f(x),
即有f(4+x)=-f(x),即有f(x+8)=-f(x+4)=f(x).
則f(x)是以8為最小正周期的函數(shù),
即有f(1610)=f(8×201+2)=f(2),
令x=4代入f(x+2)=f(2-x),得f(6)=f(-2)
∵f(6)=3,∴f(-2)=3,則f(2)=-f(-2)=-3.
即有f(2013sin2α-sinαcosα)=-3.
故答案為:-3.
點(diǎn)評(píng):本題主要考查了同角的商數(shù)關(guān)系和平方關(guān)系的應(yīng)用,即由正切的值求有關(guān)三角函數(shù)式的值的轉(zhuǎn)化,同時(shí)考查函數(shù)的奇偶性和對(duì)稱性,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A1、A2是平面內(nèi)兩個(gè)定點(diǎn),且|A1A2|=2c(c>0),若動(dòng)點(diǎn)M與A1、A2連線的斜率之積等于常數(shù)m(m≠0),求點(diǎn)M的軌跡方程,并討論軌跡形狀與m值的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為
x=2+2cosθ
y=2sinθ
(θ為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,直線l的方程為ρsin(θ+
π
4
)=0
.則曲線C在極坐標(biāo)系中的方程是
 
;直線l被曲線C截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程選做題)在極坐標(biāo)系中,以點(diǎn)(1,0)為圓心,1為半徑的圓的極坐標(biāo)方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P、Q是兩個(gè)非空集合,定義集合間的一種運(yùn)算“⊙“:P⊙Q={x|x∈P∪Q,且x∉P∩Q}如果P={x|-2≤x≤2},Q={x|x>1},則P⊙Q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別是雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn),A為雙曲線的左頂點(diǎn),以F1,F(xiàn)2為為直徑的圓交雙曲線的某條漸近線于MN兩點(diǎn)(M在x軸上方,N在x軸下方),c為雙曲線的半焦距,O為坐標(biāo)原點(diǎn).則下列命題正確的是
 
(寫出所有正確命題的編號(hào)).
①|(zhì)OM|=|ON|=c;
②點(diǎn)N的坐標(biāo)為(a,b);
③∠MAN>90°;
④若∠MAN=120°,則雙曲線C的離心率為
21
3
;
⑤若∠MAN=120°,且△AMN的面積為2
3
,則雙曲線C的方程為
x2
3
-
y2
4
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
-
x
,x≥0
x2-1,x<0
,則f(f(2))=( 。
A、-1B、-3C、1D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x||x-2|<3},B={x|x2-2x+2m<0}.
(1)若實(shí)數(shù)m=-4,求A∩B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科) 已知點(diǎn)P,Q是△ABC所在平面上的兩個(gè)定點(diǎn),且滿足
PA
+
PC
=
0
,2
QA
+
QB
+
QC
=
BC
,若|
PQ
|=λ|
BC
|
,則正實(shí)數(shù)λ=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案