已知函數(shù)y=xlnx,求其在點(diǎn)x=1處的切線方程.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:求導(dǎo)函數(shù),確定切線的斜率,切點(diǎn)的坐標(biāo),利用點(diǎn)斜式可得切線方程.
解答: 解:∵y=xlnx,
∴y′=1×lnx+x•
1
x
=1+lnx,
∴x=1時(shí),y′=1.
又當(dāng)x=1時(shí),y=0,
∴在點(diǎn)x=1處的切線方程為y=x-1.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義,考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈[-1,1],則x2+(a-4)x+4-2a>0的解為( 。
A、x>3或x<2
B、x>2或x<1
C、x>3或x<1
D、1<x<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,點(diǎn)P是半圓C:x2+y2=1(y≥0)上位于x軸上方的任意一點(diǎn),A、B是直徑的兩個(gè)端點(diǎn),以AB為一邊作正方形ABCD,PC交AB于E,PD交AB于F,求證:BE,EF,F(xiàn)A成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(1+x),g(x)=ln(1-x).
(1)求函數(shù)f(x)-g(x)的定義域;
(2)判斷函數(shù)f(x)-g(x)的奇偶性,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線3x-y=0上且在第一象限,圓C與x相切,且被直線x-y=0截得的弦長(zhǎng)為2
7

(1)求圓C的方程;
(2)若P(x,y)是圓C上的點(diǎn),滿足
3
x+y-m≤0恒成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知π<α<2π且tanα=-2,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a,b,c是A,B,C所對(duì)的邊,S是該三角形的面積,且a2+b2-c2=ab
(1)求∠C的大小;
(2)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α的終邊過(guò)點(diǎn)(a,2a)(其中a<0),
(1)求cosα及tanα的值.
(2)化簡(jiǎn)并求
sin(π-α)cos(2π-α)sin(-α+
2
)
tan(-α-π)sin(-π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

⊙O1:x2+y2-4x-6y+12=0與⊙O2:x2+y2-8x-6y+16=0的位置關(guān)系是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案