設(shè)橢圓(a>b>0)的左焦點(diǎn)為F1(-2,0),左準(zhǔn)線(xiàn)L1與x軸交于點(diǎn)N(-3,0),過(guò)點(diǎn)N且傾斜角為30°的直線(xiàn)L交橢圓于A、B兩點(diǎn);
(1)求直線(xiàn)L和橢圓的方程;
(2)求證:點(diǎn)F1(-2,0)在以線(xiàn)段AB為直徑的圓上
【答案】分析:(1)根據(jù)題意可求得橢圓的c,進(jìn)而根據(jù)準(zhǔn)線(xiàn)方程求得a,則b可求得.則橢圓方程可得,進(jìn)而根據(jù)點(diǎn)斜式求得直線(xiàn)L的方程.
(2)把直線(xiàn)與橢圓方程聯(lián)立,消去y,設(shè)出A,B的坐標(biāo),則可求得x1+x2=-3x1x2,進(jìn)而分別表示出F1A和AF1B斜率,進(jìn)而求得的值.
解答:解:(1)由題意知,c=2及得a=6
∴b2=6-22=2
∴橢圓方程為
直線(xiàn)L的方程為:y-0=tan30(x+3)即y=(x+3)
(2)由方程組得2x2+6x+3=0
設(shè)A(x1,y1),B(x2,y2),
則x1+x2=-3x1x2=
=
∴F1A⊥F1B則∠AF1B=90°
∴點(diǎn)F(-2,0)在以線(xiàn)段AB為直徑的圓上
點(diǎn)評(píng):本題主要考查了直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題.考查了學(xué)生綜合分析問(wèn)題和解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,設(shè)橢圓C:(ab>0)的左、右兩個(gè)焦點(diǎn)分別為F1、F2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線(xiàn)l與橢圓C相交,其中一個(gè)交點(diǎn)為M(,1).

(1)求橢圓C的方程;

(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),直線(xiàn)BF2交橢圓C于另一點(diǎn)N,求△F1BN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿(mǎn)足|PF2|=|F1F2|.

(1)求橢圓的離心率e;

(2)設(shè)直線(xiàn)PF2與橢圓相交于A,B兩點(diǎn).若直線(xiàn)PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),|MN|=|AB|,求橢圓的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專(zhuān)題復(fù)習(xí)提分訓(xùn)練22練習(xí)卷(解析版) 題型:解答題

設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F,離心率為,過(guò)點(diǎn)F且與x軸垂直的直線(xiàn)被橢圓截得的線(xiàn)段長(zhǎng)為.

(1)求橢圓的方程;

(2)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線(xiàn)與橢圓交于C,D兩點(diǎn).·+·=8,k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年四川省高三高考極限壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)橢圓C:(“a>b〉0)的左焦點(diǎn)為,橢圓過(guò)點(diǎn)P()

(1)求橢圓C的方程;

(2)已知點(diǎn)D(1, 0),直線(xiàn)l:與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆湖北省黃石市高二數(shù)學(xué)上學(xué)期期末考試 題型:解答題

設(shè)橢圓+=1(a>b>0)的左焦點(diǎn)為F1(-2,0),左準(zhǔn)線(xiàn)l1與x軸交于點(diǎn)N(-3,0),過(guò)點(diǎn)N且傾斜角為30°的直線(xiàn)l交橢圓于A、B兩點(diǎn).

(1)求直線(xiàn)l和橢圓的方程;

(2)求證:點(diǎn)F1(-2,0)在以線(xiàn)段AB為直徑的圓上.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案