已知函數(shù)f(x)=x2 mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實數(shù)m的取值范圍;
(2)當(dāng)m=2時,求函數(shù)f(x)在[1,e]上的最大值和最小值

(1);(2);

解析試題分析:(1)主要利用函數(shù)在區(qū)間上的單調(diào)遞增轉(zhuǎn)化為導(dǎo)數(shù)在該區(qū)間上恒大于零,然后再把恒成立問題轉(zhuǎn)化為最值來求;(2)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,然后求對應(yīng)的最值
試題解析:(1)若函數(shù)f(x)在(,+∞)上是增函數(shù),
則f′(x)≥0在(,+∞)上恒成立                        2分
而f′(x)=x ,即m≤x2在(,+∞)上恒成立,即m≤      8分
(2)當(dāng)m=2時,f′(x)=x =,              
令f′(x)=0得x=±,                                10分
當(dāng)x∈[1,)時,f′(x)<0,當(dāng)x∈(,e)時,f′(x)>0,
故x=是函數(shù)f(x)在[1,e]上唯一的極小值點,故f(x)min=f()=1 ln2,
又f(1)=,f(e)=e2 2=>,故f(x)max=                        14分
考點:導(dǎo)數(shù)、函數(shù)單調(diào)性,函數(shù)的最值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,,點A、B為函數(shù)的相鄰兩個零點,AB=π.
(1)求的值;
(2)若,,求的值;
(3)求在區(qū)間上的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若函數(shù)處取得極值,且函數(shù)只有一個零點,求的取值范圍.
(2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若時,求的單調(diào)區(qū)間;
(Ⅱ)時,有極值,且對任意時,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)設(shè)為函數(shù)的極值點,求證: ;
(Ⅱ)若當(dāng)時,恒成立,求正整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) .
(1)若.
(2)若函數(shù)上是增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,.
(1)求證:函數(shù)上單調(diào)遞增;
(2)若函數(shù)有四個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),(其中m為常數(shù)).
(1) 試討論在區(qū)間上的單調(diào)性;
(2) 令函數(shù).當(dāng)時,曲線上總存在相異兩點、,使得過、點處的切線互相平行,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù) (R),且該函數(shù)曲線處的切線與軸平行.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)證明:當(dāng)時,.

查看答案和解析>>

同步練習(xí)冊答案