7.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x-y≥1\\ x+y≤4\\ x≥0\\ y≥0\end{array}\right.$則z=x-3y的取值范圍為[-2,4].

分析 由約束條件作出可行域,聯(lián)立方程組求出最優(yōu)解的坐標(biāo),代入目標(biāo)函數(shù)得答案.

解答 解:由約束條件$\left\{\begin{array}{l}x-y≥1\\ x+y≤4\\ x≥0\\ y≥0\end{array}\right.$作出可行域如圖,

聯(lián)立$\left\{\begin{array}{l}{x+y=4}\\{x-y=1}\end{array}\right.$,解得A($\frac{5}{2}$,$\frac{3}{2}$),
聯(lián)立$\left\{\begin{array}{l}{y=0}\\{x+y=4}\end{array}\right.$,解得B(4,0),
由圖可知,當(dāng)目標(biāo)函數(shù)z=x-3y過A時,z有最小值為-2;
當(dāng)目標(biāo)函數(shù)z=x-3y過B時,z有最大值為:4.
故答案為:[-2,4].

點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,點P在雙曲線上且不與頂點重合,過F2作∠F1PF2的角平分線的垂線,垂足為A.若|OA|=b,則該雙曲線的離心率為( 。
A.$\frac{{\sqrt{5}+1}}{2}$B.$\sqrt{3}$C.$\sqrt{2}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.集合{x|x2=1}的子集個數(shù)是(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=xex-k(x∈R)恰有兩個零點,其中e為自然對數(shù)的底數(shù),則實數(shù)k的取值范圍是( 。
A.(-∞,0)B.$(-\frac{1}{e},2{e^2})$C.(0,2e2D.$(-\frac{1}{e},0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知{an}是等差數(shù)列,a1=2,a3=4,則a4+a5+a6=(  )
A.16B.17C.18D.19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線與函數(shù)y=lnx+ln2+1的圖象相切,則雙曲線的離心率等于( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{5}}}{2}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)滿足$f(x)=\frac{1}{3}{x^3}-f'(1)•{x^2}-x$,則f'(1)的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)關(guān)于x的不等式ax2+2|x-a|-20<0的解集為A,試探究是否存在自然數(shù)a,使得不等式x2+x-2<0與|2x-1|<x+2的解都屬于A,若不存在,說明理由.若存在,請求滿足條件的a的所有的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.空間有10個點,其中有5個交點共面(除此之外再無4點共面),以每4個點為頂點作一個四面體,一共可作205個四面體(用數(shù)字作答).

查看答案和解析>>

同步練習(xí)冊答案