【題目】橢圓與軸,軸的正半軸分別交于兩點(diǎn),原點(diǎn)到直線的距離為,該橢圓的離心率為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線與橢圓交于兩個(gè)不同的點(diǎn),求線段的垂直平分線在軸上截距的取值范圍.
【答案】(1);(2).
【解析】
試題分析:(1)由題意直線方程為,即,根據(jù)題設(shè)條件列出方程組,求解的值,即可求得橢圓的方程;(2)當(dāng)直線斜率不存在時(shí),線段的垂直平分線的縱截距為0;當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,代入橢圓的方程,由和韋達(dá)定理,得,利用垂直平分線的方程,即可求得線段的垂直平分線在軸上截距的取值范圍.
試題解析:(1)由題意,直線方程為,即,
由,得故橢圓的方程為;
(2)當(dāng)直線斜率不存在時(shí),線段的垂直平分線的縱截距為0;
當(dāng)直線斜率存在時(shí),設(shè)直線的方程為,
代入得………………(*).
由,得,
設(shè),,的中點(diǎn),
根據(jù)(*)及韋達(dá)定理,有,,
于是線段的垂直平分線的方程為,
令,得中垂線的縱截距,由,得,
綜上,縱截距的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題:直線與圓有兩個(gè)交點(diǎn);命題:.
(1)若為真命題,求實(shí)數(shù)的取值范圍;
(2)若為真命題,為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一對(duì)父子參加一個(gè)親子摸獎(jiǎng)游戲,其規(guī)則如下:父親在裝有紅色、白色球各兩個(gè)的甲袋子里隨機(jī)取兩個(gè)球,兒子在裝有紅色、白色、黑色球各一個(gè)的乙袋子里隨機(jī)取一個(gè)球,父子倆取球互相獨(dú)立,兩人各摸球一次合在一起稱為一次摸獎(jiǎng),他們?nèi)〕龅娜齻(gè)球的顏色情況與他們獲得的積分對(duì)應(yīng)如下表:
所取球的情況 | 三個(gè)球均為紅色 | 三個(gè)球均為不同色 | 恰有兩球?yàn)榧t色 | 其他情況 |
所獲得的積分 | 180 | 90 | 60 | 0 |
(1)求一次摸獎(jiǎng)中,所取的三個(gè)球中恰有兩個(gè)是紅球的概率;
(2)設(shè)一次摸獎(jiǎng)中,他們所獲得的積分為,求的分布列及均值(數(shù)學(xué)期望);
(3)按照以上規(guī)則重復(fù)摸獎(jiǎng)三次,求至少有兩次獲得積分為60的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在上的奇函數(shù),當(dāng)時(shí),(其中,是自然對(duì)數(shù)的底數(shù),=2.71828…).
(Ⅰ)求的值;
(Ⅱ)若時(shí),方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲乙二人用4張撲克牌(分別是紅桃2,紅桃3,紅桃4,方片4)完游戲,他們將撲克牌洗勻后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一張.
(1)設(shè)分別表示甲、乙抽到的牌的數(shù)字,寫出甲乙二人抽到的牌的所有情況;
(2)若甲抽到紅桃3,則乙抽出的牌的牌面數(shù)字比3大的概率是多少?
(3)甲乙約定:若甲抽到的牌的牌面數(shù)字比乙大,則甲勝,反之,則乙勝,你認(rèn)為此游戲是否公平,說(shuō)明你的理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), 為正實(shí)數(shù).
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求證: ;
(3)若函數(shù)有且只有個(gè)零點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列滿足.
(1)求證:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(2)記數(shù)列的前項(xiàng)和,求使得成立的最小整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱柱中,已知,點(diǎn)在底面的投影是線段的中點(diǎn).
(1)證明:在側(cè)棱上存在一點(diǎn),使得平面,并求出的長(zhǎng);
(2)求:平面與平面夾角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com