分析 利用數(shù)量積運算性質(zhì)、點與橢圓的位置關(guān)系轉(zhuǎn)化為點的坐標滿足橢圓方程即可得出.
解答 解:設(shè)F1(-c,0),F(xiàn)2(c,0),∴$\overrightarrow{M{F}_{1}}$=$(-c-\frac{2\sqrt{6}}{3},-\frac{\sqrt{3}}{3})$,$\overrightarrow{M{F}_{2}}$=$(c-\frac{2\sqrt{6}}{3},\frac{\sqrt{3}}{3})$.
∵$\overrightarrow{M{F}_{1}}•\overrightarrow{M{F}_{2}}$=0,∴$(\frac{2\sqrt{6}}{3})^{2}$-c2+$(\frac{\sqrt{3}}{3})^{2}$=0,
∴c2=3.
∴a2-b2=3,①
又點M在橢圓上,∴$\frac{8}{3{a}^{2}}$+$\frac{1}{3^{2}}$=1 ②
由①代入②得:$\frac{8}{3{a}^{2}}$+$\frac{1}{3({a}^{2}-3)}$=1,
整理為:a4-6a2+8=0,
解得a2=2,或4,
∵a2>3,∴a2=4,b2=1.
∴橢圓方程為$\frac{{x}^{2}}{4}$+y2=1.
故答案為:$\frac{{x}^{2}}{4}$+y2=1.
點評 本題考查了橢圓的標準方程及其性質(zhì)、數(shù)量積運算性質(zhì)、點與橢圓的位置關(guān)系,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{6}}{6}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com