17.求函數(shù)y=log$\frac{1}{3}$(x2-4x+3)的單調(diào)區(qū)間.減區(qū)間為(3,+∞);增區(qū)間為(-∞,1).

分析 令t=x2-4x+3>0,求得函數(shù)的定義域,再根據(jù)y=log$\frac{1}{3}$t,利用二次函數(shù)的性質(zhì)求得y的單調(diào)區(qū)間.

解答 解:令t=x2-4x+3>0,求得x<1,或x>3,可得函數(shù)的定義域為{x|x<1,或x>3  },且y=log$\frac{1}{3}$t,
故本題即求函數(shù)t在定義域內(nèi)的單調(diào)區(qū)間.
再利用二次函數(shù)的性值可得,t的增區(qū)間為(3,+∞),故函數(shù)y的減區(qū)間為(3,+∞);
由于t的減區(qū)間為(-∞,1),故函數(shù)y的增區(qū)間為(-∞,1).
故答案為:減區(qū)間為(3,+∞);增區(qū)間為(-∞,1).

點評 本題主要考查復(fù)合函數(shù)的單調(diào)性,二次函數(shù)的性質(zhì),對數(shù)函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知雙曲線一條漸近線的斜率為$\sqrt{3}$,焦點是(-4,0)、(4,0),則雙曲線方程為( 。
A.$\frac{x^2}{12}-\frac{y^2}{4}=1$B.$\frac{x^2}{4}-\frac{y^2}{12}=1$C.$\frac{x^2}{10}-\frac{y^2}{6}=1$D.$\frac{x^2}{6}-\frac{y^2}{10}=1$1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知下面四個命題:
①“若x2-x=0,則x=0或x=l”的逆否命題為“若x≠0且x≠1,則x2-x≠0”
②“x<1”是“x2-3x+2>0”的充分不必要條件
③命題P:存在x0∈R,使得x02+x0十1<0,則?p:任意x∈R,都有x2+x+1≥0
④若P且q為假命題,則p,q均為假命題
其中真命題個數(shù)為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
試從上述五個式子中選擇一個,求出這個常數(shù);并根據(jù)你的計算結(jié)果,將該同學(xué)的發(fā)現(xiàn)推廣為三角恒等式sin2α+cos2(30°-α)-sinαcos(30°-α)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知p:?x∈R使mx2-mx+1<0成立,q:方程$\frac{x^2}{m-1}+\frac{y^2}{3-m}=1$的曲線是雙曲線,若命題p∧q為假命題、命題p∨q為真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是定義在[-5,5]上的函數(shù)y=f(x),根據(jù)圖象回答函數(shù)y=f(x)在定義域上的單調(diào)增區(qū)間是( 。
A.[-2,1),[3,5]B.[-2,1)∪[3,5]C.[-2,1]D.[3,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)$f(x)=-\frac{2}{x+1},x∈[0,2]$,證明函數(shù)的單調(diào)性,并求函數(shù)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列有關(guān)命題說法正確的是(  )
A.命題“若x2=1,則x=1或x=-1”的否命題為:“若x2≠1,則x≠1或x≠-1”
B.“x=-1”是“x2-5x-6=0”的必要不充分條件
C.命題“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1>0”
D.命題“若x=y,則sinx=siny”的逆否命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)滿足 $\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0 ( x1≠x2) 且f(m)>f(2m-1),則實數(shù)m的取值范圍是(-∞,1).

查看答案和解析>>

同步練習(xí)冊答案