以數(shù)列{an}的任意相鄰的兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+k的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N*,b1≠0).

(1)求證:數(shù)列{bn}是等比數(shù)列;

(2)設(shè)數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,若S6=T4,S5=-9,求k的值.

解析:(1)Pn(an,an+1)(n∈N*)在一次函數(shù)y=2x+k的圖象上,an+1=2an+k,即an+1+k=2(an+k),?

bn=an+1-an=an+k,則bn+1=an+1+k,?

所以==2,故數(shù)列{bn}是等比數(shù)列.?

(2)由(1),b1=a1+k,bn=b1×2n-1=(a1+k)2n-1,an=bn-k,?

S6=T6-6k=-6k=63a1+57k,?

T4==15(a1+k),?

S6=T4a1=-k.?

S5=-9,即T5-5k=-9,-5k=-9,?

31a1+26k=-9.?

a1=-k代入,得k=8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)全解題庫(國標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+k的圖象上,數(shù)列{bn}滿足條件bn=an+1-an(n∈N*,b1≠0).

(1)求證:數(shù)列{bn}是等比數(shù)列;

(2)設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若S6T4S5=-9,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007屆東莞市高三文科數(shù)學(xué)高考模擬題(二) 題型:044

以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N)均在一次函數(shù)y=2x+k的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N,b1≠0),

(1)求證:數(shù)列{bn}是等比數(shù)列;

(2)設(shè)數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,若S6=T4,S5=-9,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇省泗洪縣實(shí)驗(yàn)中學(xué)2008屆高三第三次月考數(shù)學(xué)試卷 題型:044

以數(shù)列{an}的任意相鄰兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+k,(k≠0)的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N*),

(1)求證:數(shù)列{bn}是等比數(shù)列;

(2)設(shè)數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn、Tn,若S6=T4,S5=-9,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以數(shù)列{an}的任意兩項(xiàng)為坐標(biāo)的點(diǎn)Pn(an,an+1)(n∈N*)均在一次函數(shù)y=2x+8的圖象上,數(shù)列{bn}滿足條件:bn=an+1-an(n∈N*,b1≠0)且a1=1.

(文)求數(shù)列{bn}的前n項(xiàng)和Tn.

(理)求數(shù)列{an}的前n項(xiàng)和Sn和數(shù)列{bn}的前n項(xiàng)和Tn.

查看答案和解析>>

同步練習(xí)冊答案