給出下列命題:
①如果函數(shù)f(x)對任意的x∈R,都有f(1+x)=f(1-x),那么函數(shù)f(x)必是偶函數(shù);
②要得到函數(shù)y=sin(1-x)的圖象,只要將函數(shù)y=sin(-x)的圖象向右平移1個單位即可;
③如果函數(shù)f(x)對任意的x1、x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0,那么函數(shù)f(x)在R上是增函數(shù);
④函數(shù)y=f(x)和函數(shù)y=f(x-2)+1的圖象一定不能重合.其中真命題的序號是
 
分析:①如果函數(shù)f(x)對任意的x∈R,都有f(1+x)=f(1-x),那么函數(shù)f(x)必是偶函數(shù),由對稱性判斷;
②要得到函數(shù)y=sin(1-x)的圖象,只要將函數(shù)y=sin(-x)的圖象向右平移1個單位即可,由平移規(guī)則進行判斷;
③如果函數(shù)f(x)對任意的x1、x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0,那么函數(shù)f(x)在R上是增函數(shù),由函數(shù)的單調性的定義判斷;
④函數(shù)y=f(x)和函數(shù)y=f(x-2)+1的圖象一定不能重合,有平移規(guī)則判斷.
解答:解:①如果函數(shù)f(x)對任意的x∈R,都有f(1+x)=f(1-x),那么函數(shù)f(x)必是偶函數(shù),此命題中的條件說明函數(shù)關于直線x=1對稱,不能得出偶函數(shù)的結論,故錯誤;
②要得到函數(shù)y=sin(1-x)的圖象,只要將函數(shù)y=sin(-x)的圖象向右平移1個單位即可,由平移規(guī)則知,此命題是正確命題;
③如果函數(shù)f(x)對任意的x1、x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]>0,那么函數(shù)f(x)在R上是增函數(shù),由函數(shù)單調性的定義知,此命題是正確命題;
④函數(shù)y=f(x)和函數(shù)y=f(x-2)+1的圖象一定不能重合,存在一個函數(shù)右移兩個單位再產(chǎn)移一個單位可以重合,如y=
1
2
x,故此命題不正確.
綜上,②③是正解命題
故答案為②③
點評:本題考查函數(shù)y=Asin(ωx+φ)的圖象變換,求解本題的關鍵是掌握住平移的規(guī)則以及函數(shù)的對稱性的,函數(shù)的單調性的判斷方法,圖象的變化等知識,本題是基礎知識基本概念題,涉及到的知識點較多,判斷時思維轉換快,易出錯.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

42、給出下列命題:
①如果函數(shù)f(x)對任意的x1,x2∈R,且x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0,則函數(shù)f(x)在R上是減函數(shù);
②如果函數(shù)f(x)對任意的x∈R,都滿足f(x)=-f(2+x),那么函數(shù)f(x)是周期函數(shù);
③函數(shù)y=f(x)與函數(shù)y=f(x+1)-2的圖象一定不能重合;
④對于任意實數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時,f′(x)>0,g′(x)>0,則x<0時,f′(x)>g′(x).
其中正確的命題是
①②④
.(把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①如果向量
a
,
b
,
c
共面,向量
b
,
c
d
也共面,則向量
a
,
b
,
c
d
共面;
②已知直線a的方向向量
a
與平面α,若
a
∥平面α,則直線a∥平面α;
③若P、M、A、B共面,則存在唯一實數(shù)x、y使
MP
=x
MA
+y
MB
;
④對空間任意點O與不共線的三點A、B、C,若
OP
=x
OA
+y
OB
+z
OC
(其中x+y+z=1),則P、A、B、C四點共面; 在這四個命題中為真命題的序號有
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①如果a,b是兩條直線,且a∥b,那么a平行于經(jīng)過b的任何平面;
②如果平面α不垂直于平面β,那么平面α內一定不存在直線垂直于平面β;
③若直線a,b是異面直線,直線b,c是異面直線,則直線a,c也是異面直線;
④已知平面α⊥平面β,且α∩β=b,若a⊥b,則a⊥平面β;
⑤已知直線a⊥平面α,直線b在平面β內,a∥b,則α⊥β.
其中正確命題的序號是
②⑤
②⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①如果函數(shù)f(x)對任意x∈R,都有f(a+x)=f(a-x)(a是常數(shù)),那么函數(shù)f(x)必是偶函數(shù);
②如果函數(shù)f(x)對任意x∈R,都有f(2+x)=-f(x),那么函數(shù)f(x)是周期函數(shù);
③如果函數(shù)f(x)對任意x1,x2∈R,且x1≠x2,都有
f(x1)-f(x2)
x1-x2
>0
,那么函數(shù)f(x)在R上是增函數(shù);
④函數(shù)y=f(x)和函數(shù)y=f(x-1)+2的圖象一定不會重合.
其中真命題的序號是( 。

查看答案和解析>>

同步練習冊答案