19.已知函數(shù)f(x)=ax5-bx+|x|-1,若f(-2)=2,求f(2)=0.

分析 利用函數(shù)的解析式,結(jié)合已知條件直接求解函數(shù)值即可.

解答 解:函數(shù)f(x)=ax5-bx+|x|-1,若f(-2)=2,
可得:-32a+2b+1=2,
f(2)=32a-2b+1=-1+1=0
故答案為:0,

點評 本題考查函數(shù)的解析式以及函數(shù)的奇偶性的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在數(shù)學(xué)研究中,函數(shù)的變化率是研究的重點對象之一,定義$\frac{f(x)+f(a)}{|x-a|}$為函數(shù)f(x)對實數(shù)x=a的平均定向增長率.已知某物體離開初始位置的距離f(x)與時間x的函數(shù)關(guān)系式為f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x+4,x≥2}\\{37-18x,x<2}\end{array}\right.$求該物體離開初始位置的距離對x=2的平均定向增長率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列不等式中無解的是( 。
A.x2+2x-1≤0B.x2+4x+4≤0C.4-4x-x2<0D.2-3x+2x2≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.如圖,函數(shù)f(x)的圖象為折線 AC B,則不等式f(x)≥log2(x+1)的解集是(-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列函數(shù)中表示同一函數(shù)的是( 。
A.y=$\sqrt{{x}^{4}}$與y=($\sqrt{x}$)4B.y=$\root{3}{{x}^{3}}$與y=$\frac{{x}^{2}}{x}$
C.y=$\sqrt{{x}^{2}+x}$ 與y=$\sqrt{x}$•$\sqrt{x+1}$D.y=$\frac{1}{|x|}$與y=$\frac{1}{\sqrt{{x}^{2}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f($\sqrt{x}$-1)=x+2$\sqrt{x}$+2,則f(3)=26.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,AB=BC,∠B=90°,M為BC的中點,BN⊥AM,且交AC于點N,用解析法證明:∠CMN=∠BMA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.正項等差數(shù)列{an}的前n項和為Sn,已知am-1+am+1-am2=-3,S2m-1=57,則m=(  )
A.38B.20C.10D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}x-1≥0\\ x-y≤0\\ x+y-4≤0\end{array}\right.$,則$\frac{y}{2x+2}$的最大值為$\frac{3}{4}$,點(x,y)所在的區(qū)域的面積為1.

查看答案和解析>>

同步練習(xí)冊答案