【題目】完成下列抽樣調(diào)查,較為合理的抽樣方法依次是( )
①從件產(chǎn)品中抽取件進行檢查;
②某校高中三個年級共有人,其中高一人、高二人、高三人,為了了解學生對數(shù)學的建議,擬抽取一個容量為的樣本;
③某劇場有排,每排有個座位,在一次報告中恰好坐滿了聽眾,報告結(jié)束后,為了了解聽眾意見,需要請名聽眾進行座談.
A.簡單隨機抽樣,系統(tǒng)抽樣,分層抽樣;B.分層抽樣,系統(tǒng)抽樣,簡單隨機抽樣;
C.系統(tǒng)抽樣,簡單隨機抽樣,分層抽樣;D.簡單隨機抽樣,分層抽樣,系統(tǒng)抽樣;
【答案】D
【解析】
①中,總體數(shù)量較少,適合簡單隨機抽樣;②中,三個年級有明顯差異,適合分層抽樣;③中,總體數(shù)量較多,又有編號,適合系統(tǒng)抽樣.
對于①,從件產(chǎn)品中抽取件進行檢查,總體的數(shù)量較少,且個體差異不明顯,符合簡單隨機抽樣的特點;
對于②,該校高中的三個年級,是差異明顯的三個部分,符合分層抽樣的特點;
對于③,該劇場有排,每排有個座位,顯然總體數(shù)量較多,又有編號,符合系統(tǒng)抽樣的特點.
故選:D.
類別 | 共同點 | 各自特點 | 聯(lián)系 | 適用范圍 |
簡單隨機抽樣 | ①抽樣過程中每個個體被抽到的可能性相等; ②每次抽出個體后不再將它放回,即不放回抽樣 | 從總體中逐個抽取 | 總體個數(shù)較少 | |
系統(tǒng) 抽樣 | 將總體均分成幾部分,按預先定出的規(guī)則在各部分中抽取 | 在起始部分取樣時,采用簡單隨機抽樣 | 總體個數(shù)較多 | |
分層 抽樣 | 將總體分成幾層,分層進行抽取 | 各層抽樣時,采用簡單隨機抽樣或系統(tǒng)抽樣 | 總體由差異明顯的幾部分組成 |
科目:高中數(shù)學 來源: 題型:
【題目】某工廠利用隨機數(shù)表對生產(chǎn)的600個零件進行抽樣測試,先將600個零件進行編號,編號分別為001,002,,599,600從中抽取60個樣本,如下提供隨機數(shù)表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若從表中第6行第6列開始向右依次讀取3個數(shù)據(jù),則得到的第6個樣本編號
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計這種產(chǎn)品質(zhì)量指標值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知棱長為1的正方體,點是四邊形內(nèi)(含邊界)任意一點, 是中點,有下列四個結(jié)論:
①;②當點為中點時,二面角的余弦值;③與所成角的正切值為;④當時,點的軌跡長為.
其中所有正確的結(jié)論序號是( )
A.①②③B.①③④C.②③④D.①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為迎接雙流中學建校周年校慶,雙流區(qū)政府計劃提升雙流中學辦學條件.區(qū)政府聯(lián)合雙流中學組成工作組,與某建設公司計劃進行個重點項目的洽談,考慮到工程時間緊迫的現(xiàn)狀,工作組對項目洽談的順序提出了如下要求:重點項目甲必須排在前三位,且項目丙、丁必須排在一起,則這六個項目的不同安排方案共有()
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋中裝有除顏色外形狀大小完全相同的6個小球,其中有4個編號為1,2, 3, 4的紅球,2個編號為A、B的黑球,現(xiàn)從中任取2個小球.;
(1)求所取2個小球都是紅球的概率;
(2)求所取的2個小球顏色不相同的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進入了北京周期,全社會對冬奧會的熱情空前高漲.
(1)為迎接冬奧會,某社區(qū)積極推動冬奧會項目在社區(qū)青少年中的普及,并統(tǒng)計了近五年來本社區(qū)冬奧項目青少年愛好者的人數(shù)(單位:人)與時間(單位:年),列表如下:
依據(jù)表格給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關系,請計算相關系數(shù)并加以說明(計算結(jié)果精確到0.01).
(若,則線性相關程度很高,可用線性回歸模型擬合)
附:相關系數(shù)公式,參考數(shù)據(jù).
(2)某冰雪運動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎三次,每次中獎的概率同為 ,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折. v
兩位顧客都購買了1050元的產(chǎn)品,并且都選擇第二種優(yōu)惠方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;
②如果你打算購買1000元的冰雪運動用品,請從實際付款金額的數(shù)學期望的角度分析應該選擇哪種優(yōu)惠方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某調(diào)研機構(gòu),對本地歲的人群隨機抽取人進行了一次生活習慣是否符合低碳觀念的調(diào)查,將生活習慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”,結(jié)果顯示,有人為“低碳族”,該人的年齡情況對應的頻率分布直方圖如圖.
(1)根據(jù)頻率分布直方圖,估計這名“低碳族”年齡的平均值,中位數(shù);
(2)若在“低碳族”且年齡在、的兩組人群中,用分層抽樣的方法抽取人,試估算每個年齡段應各抽取多少人?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:過點,且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)斜率為的直線交橢圓于,兩點,且.若直線上存在點P,使得是以為頂角的等腰直角三角形,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com