△ABC的頂點B、C的坐標(biāo)分別是(0,-4),(0,4),邊AC、BC所在的直線的斜率之積等于-2,則頂點A的軌跡方程是

[  ]

A.=1
B.=1
C.=1(x≠0)
D.=1(x≠0)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點B,C在橢圓
x2
3
+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是(  )
A、2
3
B、6
C、4
3
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•九江一模)已知點G是△ABC的外心,
GA
,
GB
 ,
GC
是三個單位向量,且滿足2
GA
+
AB
+
AC
=
0
,|
GA
|=|
AB
|.如圖所示,△ABC的頂點B、C分別在x軸和y軸的非負(fù)半軸上移動,O是坐標(biāo)原點,則|
OA
|的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
9
-
y2
16
=1,  △ABC
的頂點B、C與雙曲線的兩個焦點重合,點A在雙曲線上運動,試求△ABC的重心G的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蘭州模擬)已知△ABC的頂點B、C在橢圓
x2
12
+
y2
16
=1
上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△ABC的周長是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點A(0,1),AB邊上的中線CD所在的直線方程為2x-2y-1=0,AC邊上的高BH所在直線的方程為y=0.
(Ⅰ)求△ABC的頂點B、C的坐標(biāo);
(Ⅱ) 若圓M經(jīng)過A、B且與直線x-y+3=0相切于點P(-3,0),求圓M的方程.

查看答案和解析>>

同步練習(xí)冊答案