分析 (1)把sin29°轉(zhuǎn)化為sin(30°-1°),把sin31°轉(zhuǎn)化為sin(30°+1),利用兩角和公式化簡整理求得答案.
(2)利用二倍角公式進(jìn)行化簡.
(3)分別把sin7°和cos7°轉(zhuǎn)化為sin(15°-8°),cos(15°-8°),利用兩角和公式化簡整理.
解答 解:(1)原式=$\frac{sin(30°-1°)-sin(30°+1°)}{cos(30°-1°)-cos(30°+1)}$
=$\frac{sin30°cos1°-cos30°sin1°-sin30°cos1°-cos30°sin1°}{cos30°cos1°+sin30°sin1°-cos30°cos1°+sin30°sin1°}$
=$\frac{-2cos30°sin1°}{2sin30°sin1°}$
=-$\sqrt{3}$.
(2)原式=$\frac{3-cos20°}{2-\frac{1+cos20°}{2}}$=$\frac{3-cos20°}{\frac{3-cos20°}{2}}$=2.
(3)原式=$\frac{sin(15°-8°)+sin8°cos15°}{cos(15°-8°)-sin8°sin15°}$=$\frac{sin15°cos8°-cos15°sin8°+sin8°cos15°}{cos15°cos8°+sin15°sin8°-sin8°sin15°}$=$\frac{sin15°cos8°}{cos15°cos8°}$=tan15°=tan(45°-30°)=$\frac{tan45°-tan30°}{1+tan30°}$=$\frac{1-\frac{\sqrt{3}}{3}}{1+\frac{\sqrt{3}}{3}}$=$\frac{4-2\sqrt{3}}{2}$=2-$\sqrt{3}$
點(diǎn)評(píng) 本題主要考查了利用兩角和公式對(duì)三角函數(shù)化簡整理.考查了學(xué)生對(duì)三角函數(shù)公式的熟練應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 方程x2+bx+a=0至多一個(gè)實(shí)根 | B. | 方程x2+bx+a=0有實(shí)根 | ||
C. | 方程x2+bx+a=0至多有兩個(gè)實(shí)根 | D. | 方程x2+bx+a=0恰好有兩個(gè)實(shí)根 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰直角三角形 | C. | 等腰三角形 | D. | 正三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com