已知函數(shù)(其中
(I)求函數(shù)f(x)的反函數(shù)
(II)設(shè),求函數(shù)g(x)最小值及相應(yīng)的x值;
(III)若不等式對(duì)于區(qū)間上的每一個(gè)x值都成立,求實(shí)數(shù)m的取值范圍。
(I)函數(shù)的反函數(shù)
(II)時(shí),g(x)有最小值          
(III)實(shí)數(shù)m的取值范圍是 

(I)

函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823132556785544.gif" style="vertical-align:middle;" />
,得
因此,函數(shù)的反函數(shù)
(II)
當(dāng)且僅當(dāng)
時(shí),g(x)有最小值          
(III)由

設(shè),則
根據(jù)題意,對(duì)區(qū)間中的一切t值,恒成立


即實(shí)數(shù)m的取值范圍是  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

.已知定義在R上的函數(shù)fx)=( a , b , c , d∈R )的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且x = 1時(shí),fx)取極小值。
(Ⅰ)求fx)的解析式;
(Ⅱ)當(dāng)x∈[-1,1]時(shí),圖象舊否存在兩點(diǎn),使得此兩面三刀點(diǎn)處的切線(xiàn)互相垂直?試證明你的結(jié)論;
(Ⅲ)若[-1,1]時(shí),求證:| f ()-f)|≤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

冪指函數(shù)在求導(dǎo)時(shí),可運(yùn)用對(duì)數(shù)法:在函數(shù)解析式兩邊求對(duì)數(shù)得,兩邊同時(shí)求導(dǎo)得,于是.運(yùn)用此方法可以探求的一個(gè)單調(diào)遞增區(qū)間是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是滿(mǎn)足不等式的自然數(shù)的個(gè)數(shù),其中
(Ⅰ)求的值;
(Ⅱ) 求的解析式;
(Ⅲ)記,令,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

規(guī)定一種運(yùn)算:,例如:12=1,32=2,則函數(shù)的值域?yàn)?u>                .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù) 的圖象在處的切線(xiàn)互相平行.
(Ⅰ) 求的值;
(Ⅱ)設(shè),當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)= +lnx的圖像在點(diǎn)P(m,f(m))處的切線(xiàn)方程為y="x" ,
設(shè)
(1)求證:當(dāng)恒成立;
(2)試討論關(guān)于的方程: 根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(1)求博物館支付總費(fèi)用y與保護(hù)罩容積V之間的函數(shù)關(guān)系式;
(2)求博物館支付總費(fèi)用的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商店經(jīng)銷(xiāo)某種洗衣粉,年銷(xiāo)售總量為6000包,每包進(jìn)價(jià)2.8元,銷(xiāo)售價(jià)3.4元.全年分若干次進(jìn)貨,每次進(jìn)貨均為包.已知每次進(jìn)貨運(yùn)輸勞務(wù)費(fèi)為62.5元,全年保管費(fèi)為元.求:
(1)  把該商店經(jīng)銷(xiāo)洗衣粉一年的利潤(rùn)元表示為每次進(jìn)貨量包的函數(shù),并指
出這個(gè)函數(shù)的定義域.
(2)  為了使利潤(rùn)最大,每次應(yīng)該進(jìn)貨多少包?

查看答案和解析>>

同步練習(xí)冊(cè)答案