函數(shù)y=x-
x+1
的最小值為______.
x+1
=t,則x=t2-1,(t≥0)
y=x-
x+1
=t2-1-t=(t-
1
2
2-
5
4
,
當(dāng)且僅當(dāng)t=
1
2
,即x=-
3
4
時,函數(shù)的最小值為-
5
4

故答案為:-
5
4
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列四個命題中正確的有
②③
②③
(用序號表示,把你認(rèn)為正確的命題的序號都填上).
①函數(shù)y=x 
1
2
的定義域是{x|x≠0};
②方程lg
x-2
=lg(x-2)的解集為{3};
③方程31-x-2=0的解集為{x|x=1-log32};
④不等式lg(x-1)<1的解集是{x|x<11}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個命題:
①函數(shù)y=|x|與函數(shù)y=(
x
)2
表示同一個函數(shù);
②已知函數(shù)f(x+1)=x2,則f(e)=e2-1
③已知函數(shù)f(x)=4x2+kx+8在區(qū)間[5,20]上具有單調(diào)性,則實數(shù)k的取值范圍是(-∞,40]∪[160,+∞)
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關(guān)系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x-
x+1
的最小值為
-
5
4
-
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=-x(≤x≤1)的值域為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解:因為有負(fù)根,所以在y軸左側(cè)有交點,因此

解:因為函數(shù)沒有零點,所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點,由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點

(2)因為f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個位置上則稱有一個巧合,求巧合數(shù)的分布列。

查看答案和解析>>

同步練習(xí)冊答案