18.已知P是△ABC內(nèi)的一點(diǎn),且滿足$\overrightarrow{PA}$+3$\overrightarrow{PB}$+5$\overrightarrow{PC}$=$\overrightarrow{0}$,記△ABP、△BCP、△ACP的面積依次為S1、S2、S3,則S1:S2:S3=5:1:3.

分析 記△ABC的面積為S,由已知可得S1=$\frac{5}{9}$S,S2=$\frac{1}{9}$S,S3=$\frac{1}{3}$S,從而求得S1:S2:S3 的值.

解答 解:記△ABC的面積為S,
∵$\overrightarrow{PA}$+3$\overrightarrow{PB}$+5$\overrightarrow{PC}$=$\overrightarrow{0}$,
∴-$\frac{1}{8}$$\overrightarrow{PA}$=$\frac{3}{8}$$\overrightarrow{PB}$+$\frac{5}{8}$$\overrightarrow{PC}$=$\overrightarrow{PD}$,
則D在BC上,且BD:CD=5:3,
故PD:AD=1:9,
即以BC為底時(shí),△BCP的高是△ABC的$\frac{1}{9}$,
∴S2=$\frac{1}{9}$S,
同理:S1=$\frac{5}{9}$S,S3=$\frac{1}{3}$S,
∴S1:S2:S3=5:1:3,
故答案為:5:1:3

點(diǎn)評(píng) 本題考查共線向量的意義,兩個(gè)同底的三角形的面積之比等于底上的高之比,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=(x2+ax-a)$\sqrt{x}$.
(1)若a=-4時(shí),求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在區(qū)間(1,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x-1|+|x-a|.
(1)當(dāng)a=2時(shí),解不等式:f(x)≤x+3
(2)當(dāng)x,y∈Z,則稱點(diǎn)P(x,y)為平面上單調(diào)格點(diǎn);若(2x,y)或(x,2y)為格點(diǎn),則稱點(diǎn)P(x,y)為半格點(diǎn).設(shè)Q={(x,y)|$\left\{\begin{array}{l}{0≤x≤2}\\{0≤x≤3}\end{array}\right.$},A={(x,y)|f(x)≤y≤3,a=2}.
①求從區(qū)域Ω中任取一點(diǎn)P,而該點(diǎn)落在區(qū)域A上的概率;
②求從區(qū)域Ω中的所有格點(diǎn)或半格點(diǎn)中任取一點(diǎn)P,而該點(diǎn)是區(qū)域A上的格點(diǎn)或半格點(diǎn)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.?dāng)?shù)列{an}滿足:an+2=qan(q≠1,n∈N*),a1=1,a2=3,且a2+a3,a3+a4,a4+a5成等差數(shù)列.
(Ⅰ)求q的值,并求a3,a5的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)設(shè)bn=$\frac{lo{g}_{3}{a}_{2n}}{{a}_{2n-1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.A,B,C,D是空間不共面的四點(diǎn),且滿足$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,$\overrightarrow{AC}$•$\overrightarrow{AD}$=0,$\overrightarrow{AB}$•$\overrightarrow{AD}$=0,M為BC的中點(diǎn),則△AMD是(  )
A.鈍角三角形B.銳角三角形C.直角三角形D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn滿足:Sn=2an-3n(n∈N*).
(1)求a1,a2的值,
(2)求證:數(shù)列{an+3}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(3)在數(shù)列{Sn}中取出若干項(xiàng)S${\;}_{{n}_{1}}$,S${\;}_{{n}_{2}}$,S${\;}_{{n}_{3}}$,…,S${\;}_{{n}_{k}}$,…,若數(shù)列{nk}是等差數(shù)列,試判斷數(shù)列{S${\;}_{{n}_{k}}$}是否為等差數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若an>0,a1=2,且an+an-1=$\frac{n}{{a}_{n}-{a}_{n-1}}$+2(n≥2),則$\frac{1}{({a}_{1}-1)^{2}}$+$\frac{1}{({a}_{2}-1)^{2}}$+…+$\frac{1}{({a}_{n}-1)^{2}}$=$\frac{2n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出下列四個(gè)命題:
(1)函數(shù)f(x)=loga(2x-1)-1的圖象過定點(diǎn)(1,0);
(2)函數(shù)y=log2x與函數(shù)y=2x互為反函數(shù);
(3)已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≤0時(shí),f(x)=x(x+1),則f(x)的解析式為f(x)=x2-|x|;
(4)若loga$\frac{1}{2}$>1,則a的取值范圍是($\frac{1}{2}$,1)或(2,+∞);
(5)函數(shù)y=loga(5-ax)在區(qū)間[-1,3)上單調(diào)遞減,則a的范圍是(1,$\frac{5}{3}$];
其中所有正確命題的序號(hào)是(2)(3)(5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x2-(a+$\frac{1}{a}$)x+1,
(1)當(dāng)a=2時(shí),解關(guān)于x的不等式f(x)≤0;
(2)若a>0,解關(guān)于x的不等式f(x)≤0.

查看答案和解析>>

同步練習(xí)冊答案