分別是橢圓的左、右焦點,是第一象限內(nèi)該橢圓上的一點,且,則點的橫坐標為

A.               B.               C.            D.

 

【答案】

D

【解析】

試題分析:先根據(jù)橢圓方程求得橢圓的半焦距c,根據(jù)PF1⊥PF2,推斷出點P在以

為半徑,以原點為圓心的圓上,進而求得該圓的方程與橢圓的方程聯(lián)立求得交點的坐標,則根據(jù)點P所在的象限確定其橫坐標.解:由題意半焦距c=,又∵PF1⊥PF2,∴點P在以為半徑,以原點為圓心的圓上,由x2+y2 =3與,解得點的橫坐標為,故答案選D

考點:橢圓的簡單性質(zhì)

點評:本題主要考查了橢圓的簡單性質(zhì),橢圓與圓的位置關(guān)系.考查了考生對橢圓基礎知識的綜合運用.屬基礎題.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

、分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求·的最大值和最小值;

(2)設過定點的直線與橢圓交于不同的兩點、,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

、分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求·的最大值和最小值;

(2)設過定點的直線與橢圓交于不同的兩點、,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年甘肅省高三上學期期末考試理科數(shù)學試卷 題型:解答題

(本題滿分12分)設、分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的最大值和最小值;

(2)設過定點的直線與橢圓交于不同的兩點,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年河北省高二第二學期期末數(shù)學(理)試題 題型:解答題

(本小題滿分12分)[來源:學.科.網(wǎng)Z.X.X.K]

、分別是橢圓的左、右焦點.

(1)若是該橢圓上的一個動點,求的取值范圍;

(2)設過定點Q(0,2)的直線與橢圓交于不同的兩點M、N,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

(3)設是它的兩個頂點,直線AB相交于點D,與橢圓相交于E、F兩點.求四邊形面積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市高二上學期期中考試理科數(shù)學卷 題型:解答題

(本題滿分14分)設、分別是橢圓的左、右焦點,過且斜率為的直線相交于、兩點,且、、成等差數(shù)列.

(1)若,求的值;

(2)若,設點滿足,求橢圓的方程.

 

查看答案和解析>>

同步練習冊答案