平面內(nèi)有兩個定點F1(-5,0)和F2(5,0),動點P滿足條件|PF1|-|PF2|=6,則動點P的軌跡方程是( )
A.-=1(x≤-4)
B.-=1(x≤-3)
C.-=1(x>≥4)
D.-=1(x≥3)
【答案】分析:由條件知,點P的軌跡是以F1、F2為焦點的雙曲線右支,從而寫出軌跡的方程即可.
解答:解:由|PF1|-|PF2|=6<|F1F2|知,點P的軌跡是以F1、F2為焦點的雙曲線右支,
得c=5,2a=6,
∴a=3,
∴b2=16,
故動點P的軌跡方程是-=1(x≥3).
故選D.
點評:本題考查雙曲線的定義、求雙曲線的標(biāo)準(zhǔn)方程,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

1、平面內(nèi)有兩個定點F1,F(xiàn)2和一動點M,設(shè)命題甲,||MF1|-|MF2||是定值,命題乙:點M的軌跡是雙曲線,則命題甲是命題乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)有兩個定點F1(-5,0)和F2(5,0),動點P滿足條件|PF1|-|PF2|=6,則動點P的軌跡方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出以下命題:
(1)α,β表示平面,a,b,c表示直線,點M;若a?α,b?β,α∩β=c,a∩b=M,則M∈c;
(2)平面內(nèi)有兩個定點F1(0,3),F(xiàn)2(0-3)和一動點M,若||MF1|-|MF2||=2a(a>0)是定值,則點M的軌跡是雙曲線;
(3)在復(fù)數(shù)范圍內(nèi)分解因式:x2-3x+5=(x-
3+
11
i
2
)(x-
3-
11
i
2
)
;
(4)拋物線y2=12x上有一點P到其焦點的距離為6,則其坐標(biāo)為P(3,±6).
以上命題中所有正確的命題序號為
(1)(3)(4)
(1)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省洛陽八中高二(上)12月段考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

平面內(nèi)有兩個定點F1,F(xiàn)2和一動點M,設(shè)命題甲,||MF1|-|MF2||是定值,命題乙:點M的軌跡是雙曲線,則命題甲是命題乙的( )
A.充分但不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案