【題目】對于定義域?yàn)?/span>的函數(shù),若滿足①;②當(dāng),且時(shí),都有;③當(dāng),且時(shí),都有,則稱為“偏對稱函數(shù)”.現(xiàn)給出四個(gè)函數(shù):;;;.則其中是“偏對稱函數(shù)”的函數(shù)個(gè)數(shù)為( )
A.3B.2C.1D.0
【答案】D
【解析】
條件②等價(jià)于在(∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增,條件③等價(jià)于在(∞,0)上恒成立,依次判斷各函數(shù)是否滿足條件即可得出結(jié)論.
解:由②可知當(dāng)x>0時(shí),,當(dāng)x<0時(shí),,
∴在(∞,0)上單調(diào)遞減,在(0,+∞)上單調(diào)遞增;
由③可知當(dāng)時(shí),,即在(∞,0)上恒成立;
對,
有,
∴在(∞,-1)上單調(diào)遞減,在(-1,+∞)上單調(diào)遞增,故不滿足條件②,
∴不是“偏對稱函數(shù)”;
對,
有,
∴是奇函數(shù),在R上單調(diào)遞增,不滿足條件②,
∴不是“偏對稱函數(shù)”;
對,
當(dāng)時(shí),,
令,則,
∴在(∞,0)上單調(diào)遞減,故,不滿足條件③,
∴不為“偏對稱函數(shù)”;
對,
,令,得,
則在(∞,)上單調(diào)遞減,在(,+∞)上單調(diào)遞增,故不滿足條件②,
∴不為“偏對稱函數(shù)”.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)二次函數(shù)(,),關(guān)于的不等式的解集中有且只有一個(gè)元素.
(1)設(shè)數(shù)列的前項(xiàng)和(),求數(shù)列的通項(xiàng)公式;
(2)設(shè)(),則數(shù)列中是否存在不同的三項(xiàng)能組成等比數(shù)列?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線將矩形紙分為兩個(gè)直角梯形和,將梯形沿邊翻折,如圖2,在翻折的過程中(平面和平面不重合),下面說法正確的是
圖1 圖2
A.存在某一位置,使得平面
B.存在某一位置,使得平面
C.在翻折的過程中,平面恒成立
D.在翻折的過程中,平面恒成立
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別是C1D1,CC1的中點(diǎn),則異面直線AE與BF所成角的余弦值為( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作.它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個(gè),問該若干?”如圖是解決該問題的程序框圖.執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )
A.84B.56C.35D.28
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知傾斜角為的直線經(jīng)過拋物線的焦點(diǎn),與拋物線相交于、兩點(diǎn),且.
(1)求拋物線的方程;
(2)求過點(diǎn)且與拋物線的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司新發(fā)明了甲、乙兩種不同型號的手機(jī),公司統(tǒng)計(jì)了消費(fèi)者對這兩種型號手機(jī)的評分情況,作出如下的雷達(dá)圖,則下列說法不正確的是( )
A. 甲型號手機(jī)在外觀方面比較好.B. 甲、乙兩型號的系統(tǒng)評分相同.
C. 甲型號手機(jī)在性能方面比較好.D. 乙型號手機(jī)在拍照方面比較好.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com