分析 (Ⅰ)證明AC⊥平面SBD,即可證明:AC⊥PQ;
(Ⅱ)當(dāng)PQ∥平面SAC時(shí),設(shè)AC∩BD=O,取BO的中點(diǎn)Q,即可求四棱錐P-AQCD的體積.
解答 (Ⅰ)證明:∵四邊形ABCD是菱形,
∴AC⊥BD,
∵SD⊥平面ABCD,
∴SD⊥AC,
∵BD∩SD=D,
∴AC⊥平面SBD,
∵PQ?平面SBD,
∴AC⊥PQ;
(Ⅱ)解:設(shè)AC∩BD=O,取BO的中點(diǎn)Q,
∴PQ∥SO,
∵SO?平面SAC,PQ?平面SAC,
∴PQ∥平面SAC,
連接PO,則PO∥SD,且PO=$\frac{1}{2}$SD=1,PO⊥平面ABCD,
∵S四邊形AQCD=$\frac{3}{4}$S菱形ABCD=$\frac{3\sqrt{3}}{2}$,
∴V四棱錐P-AQCD=$\frac{1}{3}PO•$S四邊形AQCD═$\frac{\sqrt{3}}{2}$.
點(diǎn)評(píng) 本題考查線面垂直的判定與性質(zhì),考查四棱錐P-AQCD的體積,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2kπ-$\frac{π}{4}$,2kπ+$\frac{π}{4}$),k∈Z | B. | (kπ-$\frac{π}{4}$,kπ+$\frac{π}{4}$),k∈Z | ||
C. | (2kπ+$\frac{π}{4}$,2kπ+$\frac{3π}{4}$),k∈Z | D. | (kπ+$\frac{π}{4}$,kπ+$\frac{3π}{4}$),k∈Z |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (-1,-2) | C. | (2,1) | D. | (-2,-1) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com