【題目】已知函數(shù)

1)當時,證明:

2)若上有且只有一個零點,求的取值范圍.

【答案】1)見解析; 2.

【解析】

(1) 的值代入,再求出函數(shù)的最小值,即可證明;

(2)進行分類討論,當可得函數(shù)有無數(shù)個零點,求導數(shù),確定為負故符合題意,當時,求導函數(shù),對導數(shù)再求一次導,再對進行分類討論,同時利用奇偶性可得當上有且只有一個零點,當時,利用零點定理取一個特值,判斷出不合題意,得出的取值范圍.

1)當時,,

所以的定義域為R,為偶函數(shù).

,,

,所以

因為,所以上單調遞增,

上單調遞增,

,

所以上單調遞增,所以,

因為為偶函數(shù),所以當,.

2)①當時,,令,解得,

所以函數(shù)有無數(shù)個零點,不符合題意;

②當時,,當且僅當時等號成立,故符合題意;

③因為,所以是偶函數(shù),

又因為,故的零點.

時,,記,則.

1)當時,

單調遞增,故當時,

單調遞增,故

所以沒有零點.

因為是偶函數(shù),所以上有且只有一個零點.

2)當時,當時,存在,使得,且當時,單調遞減,故

時,,故單調遞減,,

,所以

由零點存在性定理知上有零點,又因為的零點,

不符合題意;

綜上所述,a的取值范圍為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,,,的中點,點在平面內的射影在線段上.

(1)求證:;

(2)若是正三角形,求三棱柱的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四邊形為矩形,,為線段上的動點.

1)若為線段的中點,求證:平面;

2)若三棱錐的體積記為,四棱錐的體積記為,當時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系中,以坐標原點O為極點,x軸正半軸為極軸,建立極坐標系,已知曲線C的極坐標方程為:,經(jīng)過點,傾斜角為的直線l與曲線C交于AB兩點

I)求曲線C的直角坐標方程和直線l的參數(shù)方程;

)求的值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)設,(其中的導數(shù)),求的最小值;

2)設,若有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖()是某品牌汽車年月銷量統(tǒng)計圖,圖()是該品牌汽車月銷量占所屬汽車公司當月總銷量的份額統(tǒng)計圖,則下列說法錯誤的是(

A.該品牌汽車年全年銷量中,月份月銷量最多

B.該品牌汽車年上半年的銷售淡季是月份,下半年的銷售淡季是月份

C.年該品牌汽車所屬公司月份的汽車銷量比月份多

D.該品牌汽車年下半年月銷量相對于上半年,波動性小,變化較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了鼓勵職員工作熱情,某公司對每位職員一年來的工作業(yè)績按月進行考評打分;年終按照職員的月平均值評選公司最佳職員并給予相應獎勵.已知職員一年來的工作業(yè)績分數(shù)的莖葉圖如圖所示:

1)根據(jù)職員的業(yè)績莖葉圖求出他這一年的工作業(yè)績的中位數(shù)和平均數(shù);

2)若記職員的工作業(yè)績的月平均數(shù)為.

①已知該公司還有6位職員的業(yè)績在100以上,分別是,,,,,,在這6人的業(yè)績里隨機抽取2個數(shù)據(jù),求恰有1個數(shù)據(jù)滿足(其中)的概率;

②由于職員的業(yè)績高,被公司評為年度最佳職員,在公司年會上通過抽獎形式領取獎金.公司準備了9張卡片,其中有1張卡片上標注獎金為6千元,4張卡片的獎金為4千元,另外4張的獎金為2千元.規(guī)則是:獲獎職員需要從9張卡片中隨機抽出3張,這3張卡片上的金額數(shù)之和就是該職員所得獎金.記職員獲得的獎金為(千元),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點,以軸正半軸為極軸,建立極坐標系,直線的極坐標方程為,曲線的參數(shù)方程為:為參數(shù)),,為直線上距離為的兩動點,點為曲線上的動點且不在直線上.

1)求曲線的普通方程及直線的直角坐標方程.

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為銳角的外心,且三邊與面積滿足,若(其中是實數(shù)),則的最大值是(

A.B.C.D.

查看答案和解析>>

同步練習冊答案