【題目】若關(guān)于某設(shè)備的使用年限(年)和所支出的維修費(fèi)(萬元)有如下統(tǒng)計(jì)資料:

若由資料知,呈線性相關(guān)關(guān)系.

1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

2)估計(jì)使用年限為10年時(shí),維修費(fèi)用約是多少?(精確到兩位小數(shù));

3)計(jì)算第2年和第6年的殘差.

附:回歸直線的斜率和截距的最小二乘估計(jì)分別為;.

【答案】1)回歸直線方程為2)估計(jì)使用年限為10年時(shí)維修費(fèi)用約是12.38萬元(3)第2年和第6年的殘差分別為-0.34和-0.46

【解析】

1)由已知求得,的值,則線性回歸方程可求;

2)由(1)中回歸方程,取求值即可;

3)由殘差的計(jì)算公式即可得解.

1)由已知得:

由上表,得:

所以,回歸直線方程為.

2)當(dāng)時(shí),(萬元),

即估計(jì)使用年限為10年時(shí)維修費(fèi)用約是12.38萬元

3)當(dāng)時(shí),,殘差為,

當(dāng)時(shí),,殘差為

所以,第2年和第6年的殘差分別為-0.34和-0.46.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為參與某次救援,潛水員需潛至水下30米處進(jìn)行作業(yè).在下潛與返回水面的過程中保持勻速,速度均為/分鐘(為常數(shù)),下潛過程中每分鐘耗氧量與速度的平方成正比,當(dāng)速度為1/分鐘時(shí),每分鐘耗氧量為0.2升;在水下30米作業(yè)時(shí),每分鐘耗氧量為0.4升:返回水面的過程中每分鐘耗氧量為0.2升假定氧氣瓶中氧氣為20升,潛水員下潛時(shí)開始使用氧氣瓶中的氧氣,返回到水面時(shí)氧氣瓶中氧氣恰好用盡.

1)試求潛水員在水下30米作業(yè)的時(shí)間(單位:分鐘)與速度的函數(shù)解析式;

2)試求潛水員在水下30米能作業(yè)的最長時(shí)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近幾年市加大霧霾治理的投入,空氣質(zhì)量與前幾年相比有了很大改善,并于2018市入選中國空氣優(yōu)良城市.已知該市設(shè)有9個監(jiān)測站用于監(jiān)測空氣質(zhì)量指數(shù)(),其中在輕度污染區(qū)、中度污染區(qū)、重度污染區(qū)分別設(shè)有2,4,3個監(jiān)測站,并以9個監(jiān)測站測得的的平均值為依據(jù)播報(bào)該市的空氣質(zhì)量.

1)若某日播報(bào)的119,已知輕度污染區(qū)平均值為70,中度污染區(qū)平均值為115,求重度污染區(qū)平均值;

2)如圖是201811月份30天的的頻率分布直方圖,11月份僅有1內(nèi).

①某校參照官方公布的,如果周日小于150就組織學(xué)生參加戶外活動,以統(tǒng)計(jì)數(shù)據(jù)中的頻率為概率,求該校學(xué)生周日能參加戶外活動的概率;

②環(huán)衛(wèi)部門從11月份不小于170的數(shù)據(jù)中抽取三天的數(shù)據(jù)進(jìn)行研究,求抽取的這三天中值不小于200的天數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知一組樣本點(diǎn),其中.根據(jù)最小二乘法求得的回歸方程是,則下列說法正確的是( )

A. 若所有樣本點(diǎn)都在上,則變量間的相關(guān)系數(shù)為1

B. 至少有一個樣本點(diǎn)落在回歸直線

C. 對所有的預(yù)報(bào)變量,的值一定與有誤差

D. 斜率,則變量正相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求上的最小值;

2)若的兩個不同的極值點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,側(cè)面為棱長為2的菱形,,,

1)求證:面

2)求直線與面所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12)已知數(shù)列的首項(xiàng)

1)求的通項(xiàng)公式;

2)證明:對任意的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進(jìn)行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援,現(xiàn)對已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

1)求出易倒伏玉米莖高的中位數(shù)

2)根據(jù)莖葉圖的數(shù)據(jù),完成下面的列聯(lián)表:

抗倒伏

易倒伏

矮莖

高莖

3)根據(jù)(2)中的列聯(lián)表,是否可以在犯錯誤的概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?

附:,

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案